

Thesis submitted in fulfilment of the requirements for the award of the degree of Doctor
of Engineering Science (Doctor in de ingenieurswetenschappen)

GRAPH-BASED DEEP LEARNING FOR SOCIAL
MEDIA AND SMART CITY DATA ANALYTICS

TIEN HUU DO
FEBRUARY 2021

Promotoren: Prof. dr. ir. Nikolaos Deligiannis

Faculty of Engineering
Department of Electronics and Informatics

Examining Committee

Prof. Dr. ir. Nikolaos Deligiannis – Vrije Universiteit Brussel – Promoter

Prof. Dr. ir. Gerd Vandersteen – Vrije Universiteit Brussel – Committee chair

Prof. Dr. ir. Rik Pintelon – Vrije Universiteit Brussel – Committee vice-chair

Prof. Dr. Bart Jansen – Vrije Universiteit Brussel – Committee secretary

Prof. Dr. ir. Adrian Munteanu – Vrije Universiteit Brussel – Member

Dr. Lina Stankovic - University of Strathclyde - Member

Dr. Laura Toni – University College London – Member

“The wonderful thing about learning something is that nobody can take

it from us”

– B. B. King

Table of contents

Acknowledgments v

Synopsis vii

Acronyms ix

Notations xiii

1 Introduction 1

1.1 Big Heterogeneous Data . 2

1.2 Social Media . 3

1.3 Smart City . 4

1.4 Graph-based Deep Learning . 4

1.5 Motivations and Research Objectives 5

1.5.1 Improving The Quality of Big Data 6

1.5.2 Exploiting Big Data Structure for Analytics 6

1.5.3 Improving Graph-based Deep Learning Models 6

1.6 Considered Applications . 7

1.6.1 Applications for Social Media Data Analytics 7

1.6.2 Applications for Smart Cities Data Analytics 8

1.6.3 General Classification Problems: Graph and Node Classification 9

1.7 Major Contributions . 9

1.8 Content Outline . 10

2 Background on Deep Learning 11

2.1 Introduction . 11

2.2 Machine Learning . 12

2.3 Deep Learning . 13

2.3.1 Artificial Neural Networks . 13

2.3.2 Convolutional Neural Networks 14

i

Table of contents

2.3.3 Recurrent Neural Networks 17

2.3.4 Attention Models: Towards Interpretability 19

2.3.5 Deep Generative Models . 20

2.3.6 Multiview Deep Learning . 21

2.3.7 End-to-end Learning . 22

2.4 Optimising The Objective Function 24

2.5 Regularization . 27

2.6 Conclusion . 29

3 Background on Graph-based Deep Learning 31

3.1 Introduction . 31

3.2 Graph Representation . 32

3.2.1 Graph Exploration with Random Walk 33

3.3 Graph Isomorphism . 34

3.4 Graph Learning . 35

3.4.1 Graph Kernels . 35

3.4.2 Representation Learning on Graphs 37

3.5 Graph Neural Networks . 42

3.5.1 Graph Recurrent Neural Networks 43

3.5.2 Graph Convolutional Neural Networks 44

3.5.3 Graph Attention Networks 49

3.5.4 Message Passing . 50

3.6 Graph-based Regularization . 52

3.7 Conclusion . 53

4 Graph-based Deep Learning for Social Media Data Analytics 55

4.1 Introduction . 55

4.2 Twitter User Geolocation with Multiview Deep Learning 56

4.2.1 The Proposed Method . 58

4.2.2 Experimental Evaluation . 67

4.3 Fake News Detection with Graph Convolutional Neural Network . . 80

4.3.1 The Proposed Method . 81

4.3.2 Experimental Evaluation . 83

4.4 Conclusion . 85

5 Graph-based Deep Learning for Analyzing Internet-of-Things Data:

Toward Smart City Applications 87

5.1 Introduction . 87

5.2 Spatio-temporal Correlation in IoT Data 88

5.3 Graph Signal Denoising using Graph Autoencoders: Application in

Traffic Monitoring . 90

ii

Table of contents

5.3.1 The Proposed Method . 91

5.3.2 Experimental Study . 95

5.4 Hyperlocal Air Pollution Inference with Graph Variational Autoen-

coders . 97

5.4.1 The Proposed Method . 98

5.4.2 Experimental Study . 104

5.5 Conclusion . 111

6 Graph Neural Networks with Message Passing and DropNode 113

6.1 Introduction . 113

6.2 Proposed Method . 115

6.2.1 Graph Convolutional Layers 115

6.2.2 Graph Convolutional Networks with GPCONV Layers 119

6.2.3 DropNode Regularization . 119

6.3 Experimental Study . 122

6.3.1 Datasets . 122

6.3.2 Experimental Settings . 123

6.3.3 Node Classification . 125

6.3.4 Graph Classification . 127

6.3.5 Regularizing Deep Graph Neural Networks 127

6.4 Conclusion . 128

7 Conclusion and Perspective Work 131

7.1 Conclusion . 131

7.2 Perspective Work . 133

A List of Publications 135

References 139

iii

iv

Acknowledgments

This PhD adventure is one of the most important periods of my life, during which

I have received supports from many amazing and truly dedicated people. I would

like to take this opportunity to express my gratitude and thank them all. Without

them, obtaining this PhD would not have been possible.

First and foremost, I would like to express my deepest gratitude and thanks to

my promoter, Prof. Nikos Deligiannis, for all the guidance, advice, and support

throughout the years. I was lucky to have my master thesis done under his

supervision when I developed my interest in research, which led me towards this

PhD. His guidance and advice on both research as well as my career have been truly

inspirational, invaluable, and priceless. I am grateful to him for the limitless hours

he spent with me for discussing ideas and reviewing my publications, including this

dissertation. I would also like to thank him for giving me opportunities to travel to

renowned conferences and join impactful projects from which I have learned a lot

and developed multiple skills.

I am grateful to Prof. Gerd Vandersteen, Prof. Rik Pintelon, Prof. Bart Jansen,

Prof. Adrian Munteanu, Dr. Lina Stankovic, and Dr. Laura Toni for accepting to

be members of my examination committee and for their time spent on reading,

evaluating, and giving me detailed suggestions to improve this dissertation.

I am delighted to have collaborated with Prof. Wilfried Philips, Valerio Panzica

La Manna, Jelle Hofman, Xuening Qin, and other team members in the imec research

project. Their expertise, constructive comments on my publications together with

numerous discussions and brainstorming sessions have provided me insightful views

on the technical challenges of air pollution inference.

Special thanks to Karin De Bruyn for your invaluable help and support on the

administrative aspects of my PhD from renewing my contract yearly to organizing

my business trips.

I would like to thank my colleagues, especially years-long office mates, for fun

moments, interesting discussions, and successful collaborations during my PhD.

Sincere thanks go to Evaggelia Tsiligianni for many endless conversations and advice.

Without her support, my PhD journey would have been much more difficult.

v

Acknowledgments

I would like to thank all Vietnamese friends for having made my PhD life in

Belgium more colorful. Big thanks to the Vietnamese football team for Sundays

with a lot of fun and excitement.

Last but not least, I am deeply thankful to my family, who were always there

to listen, encourage, and support me unconditionally. They are my endless source

of support and strength, which is essential in helping me overcome difficult periods

during my PhD journey.

vi

Synopsis

Big data has a great potential for gaining useful insights and knowledge, however,

it also presents many challenges. In this PhD research, we address two challenges

of big heterogeneous data originated from social media and smart cities, namely

data quality enhancement and data exploitation. In the first challenge, we consider

several subproblems commonly found in social media data and smart city data,

including user location prediction, traffic data denoising, and hyperlocal air quality

prediction. For the second challenge, we aim to gain insights from data, namely

that we focus on detecting fake news using social media data. As there exist

correlations across datapoints in social media and smart city data, we propose

exploiting these correlations using graph-based deep learning techniques to address

the aforementioned challenges.

Our contributions are linked to the concerned subproblems. For user location

prediction, we propose a novel deep multiview model combining multiple aspects of

social media data. One of the inputs of the multiview model is node representation,

which is learned using a graph-deep-learning-based technique. For traffic data

denoising, we design a special graph autoencoder with a Kron-reduction-based

pooling scheme. We devise a variational graph autoencoder in dealing with air

quality prediction problem. For fake news detection, we propose using a graph

convolutional neural network, which captures the relation between articles shared

by suspicious publishers. Our last contribution focuses on regularizing graph neural

networks (GNNs) by introducing a novel regularization technique based on dropping

nodes. In addition, we introduce a new message passing rule for GNNs.

In general, this thesis evaluates the effectiveness of graph-based deep learning

models, especially graph neural networks, in social media and smart city applications

to exploit the irregular graph structure of data, and attempts to improve GNNs

by addressing common issues of GNNs such as overfitting and oversmoothing.

Although some of our methods are designed for specific problems (e.g., air pollution

prediction), our formulations are general, leading to the possibility of using these

methods for different applications (e.g., recommender systems) in related domains.

vii

viii

Acronyms and Abbreviations

AI Artificial Intelligence

IoT Internet of Things

ICT Information and Communication Technologies

GNN Graph Neural Network

GCNN Graph Convolutional Neural Network

ANN Artifical Neural Network

RNN Recurrent Neural Network

CNN Convolutional Neural Network

FCN Fully Connected Neural Network

CONV Convolution

FC Fully Connected

VAE Variational Autoencoder

GAN Generative Adversarial Network

MKL Multiple Kernel Learning

CFA Cross-modal Factor Analysis

CCA Canonical Correlation Analysis

MAE Mean Absolute Error

RMSE Root Mean Square Error

NP Non-deterministic Polynomial

ix

Acronyms

NLP Natural Language Processing

LSTM Long Short-term Memory

GRNN Graph Recurrent Neural Network

GAT Graph Attention

MPNN Message Passing Neural Network

GCN Graph Convolutional Network

DCNN Diffusion Convolutional Neural Networks

GPS Global Positioning System

UTC Universal Time Coordinated

MENET Multi-Entry Neural Network

TF-IDF Term Frequency - Inverse Document Frequency

LDA Latent Dirichlet Allocation

GPU Graphics Processing Unit

GAE Graph Autoencoder

PM Particulate Matter

VGAE Variational Graph Autoencoder

AVGAE VGAE for Air quality prediction

MAVGAE Multiview AVGAE

IQR Interquartile Range

KL Kullback - Leibler

SSTR Standard Spatio-temporal Resolution

HSR High Spatial Resolution

HTR High Temporal Resolution

HSTR High Spatio-temporal Resolution

KNN K Nearest Neighbours

SVD Singular Value Decomposition

x

Acronyms

NMF Non-negative Matrix Factorization

GCONV Graph Convolution

GPCONV Transition Probability based Graph Convolution

PGCN Transition Probability based Graph Convolutional Network

K-pooling Kron Reduction basded Pooling

xi

xii

Notations

Unless stated otherwise, we will use the notations as listed below.

Machine Learning

The loss function of a machine learning model is denoted by the calligraphic capital

letter L(θ) where θ is the parameter of the model. The parameter θ can be

replaced by other notations depending on specific models. When several models are

considered, subscripts (e.g., LAVGAE) are added to differentiate different losses. In a

deep learning model, an intermediate representation is indicated by boldface capital

letters with a superscript (e.g., H(l)); the superscript indicates the corresponding

layer. Small Greek letters (e.g., α, γ) are used for hyper-parameters of machine

learning models.

Mathematics and Linear Algebra

We employ boldface capital letters to denote matrices (e.g., A), boldface lowercase

letters to denote vectors (e.g., x), and normal lowercase letters for scalar variables.

A row vector in a matrix A is represented by adding a subscript, i.e., Ai, while an

entry in the same row is denoted by Aij . Constants are indicated by regular capital

letters (e.g., N). We use R to denote the set of real numbers, while calligraphic

capital letters such as D are also used to indicate a set.

Probability

We use boldface letters (e.g., x) to represent multivariate random variables. The

density probability function (PDF) of x is denoted by p(x). Calligraphic capital

letters are again used to represent the distance between two distributions (e.g., D).

The expectation of a distribution is denoted by E.

xiii

xiv

Chapter 1

Introduction

Artificial Intelligence (AI) refers to machines or computers capable to think and react

similar to human beings. AI is a vast research area with a great number of algorithms

and methods. The start of the formal study of AI dates back to the 1950s. Since then,

AI has attracted great attention from both research and industry communities. AI

nowadays has achieved many prominent successes. One recent breakthrough of AI is

robot Sophia1 capable of talking with human with different emotional expressions on

her face. The robot was given citizenship in Saudi Arabia in 2017. Another example

of AI successes is AlphaGo2, a program developed by DeepMind in 2016, which has

beaten human professional Go players. Various AI-fueled applications have been

developing and deploying to different areas of life.

Machine learning is one subset of AI based on the idea that machines can learn

to do tasks them-self without explicitly programming. The performance of the

machines is improved gradually via experience. Deep learning is a new paradigm

of machine learning, which is based on deep neural networks. Machine learning and

deep learning have been gaining traction in recent years thanks to their practical

aspects. As such, numerous works have been introduced and some of these works

have been successfully applied to real-life applications such as autonomous cars (e.g.,

Tesla Autopilot) and virtual voice assistants (e.g., Apple Siri).

One of the reason behind the success of deep learning is the availability of big

datasets, which enables the learning of complex deep learning models. Common big

data sources include social media platforms and Internet-of-Things (IoT) devices.

Not only is the acquisition and processing of big data challenging, but also the suc-

cessful analysis of big data calls for advanced and scalable data analysis techniques,

of which many are based on deep learning. Exploiting effectively these big data

sources may bring substantial benefits to a wide range of stakeholders including

citizens, companies and governments.

1https://www.hansonrobotics.com/sophia/
2https://deepmind.com/research/case-studies/alphago-the-story-so-far

1

Chapter 1. Introduction

1.1 Big Heterogeneous Data

Recent advancements in sensor technology, cloud technology, computer networking

and high-volume storage have produced huge amounts of data, a phenomenon which

is often referred to by the term “Big Data”. In this data deluge era, the data

streams come from heterogeneous sources, e.g., IoT sensors, financial transactions

or social networks, at an unprecedented speed. This creates several challenges for

retrieving, processing and storing data. On the other hand, big data appears to

contain invaluable information that can be leveraged for many applications. Hence,

it is of significance to understand Big Data in order to properly harness its value. Big

data is often investigated via the lens of 5V model [85]: Volume, Velocity, Variety,

Veracity and Value, detailed as follows.

• Volume: This refers to the volume of data. In the big data era, data comes

in large chunks and it is measured with large units, e.g., Petabyte (PB) or

Zettabyte (ZB). One example of big data is that there are more than 300

million photos uploaded per day to Facebook [138]. Another example is that

approximately 456 million tweets are sent on Twitter every minute [138]. In

addition, it is predicted that more than 40 Zettabytes of data is created by

the year 2020, which is a 30 times increase since the year 2005 [84]. Hence, the

amount of data is exponentially increasing, and this trend will continue.

• Velocity: Given the popularity of real-time systems such as IoT sensor

networks, social media platforms and e-commerce systems, real-time streams

of data can come any time with significant speed. This challenges servers, and

may create service interruptions if not properly handled. Thus, many data-

reduction methods have been introduced such as sampling and aggregation [58]

in order to alleviate the communication and processing overhead.

• Variety: This often refers to the heterogeneous sources of data. As mentioned,

big data includes traditional structured data (e.g., employee records stored in

database with pre-defined fields), semi-structured data (e.g., semi-organised

data that does not conform to formal structure data such as web logs or

emails), and unstructured data (e.g., text, audio, photos, videos and time

series produced by IoT sensors).

• Veracity: This refers to the correctness of data. Given the fact that the data

comes from diverse sources and the data could be structured, semi-structured,

unstructured, it is more difficult to control the quality of the data. For

examples, product catalogs can have missing data attributes or descriptions

with typos. IoT measurements can be noisy because of low-quality sensors or

unstable transmission infrastructure. Data from social media platforms like

Twitter or Facebook posts may contain noisy text and meaningless hashtags.

2

1.2. Social Media

• Value: This is the most important characteristic of big data. By leveraging

statistical techniques, insights from the data can be revealed, which benefits

many applications. The recent advances in machine learning and artificial

intelligence algorithms (AI) have turned big data into a precious resource,

where patterns of the data can be automatically learned and exploited. It

is foreseen that big data and AI technologies will transform significantly

industries and human life in coming years [137].

Given the five characteristics of big data, many challenges need to be addressed.

Volume, Velocity and Variety require special techniques for processing big data effec-

tively. This leads to the release of big data processing frameworks such as Hadoop3

and Spark4. Veracity presents the challenges in data integrity and completeness, e.g.,

noisy and incomplete data. Several techniques have been introduced to address these

issues, including outlier detection, data calibration, data imputation and matrix

completion. Regarding Value, a great amount of machine learning and deep learning

algorithms have been created to extract useful insights from big data, including

supervised learning and unsupervised learning. In this thesis, we focus on the last two

characteristics and address their challenges, namely noisy data, incomplete data and

data exploitation. Subsequent chapters show how these challenges can be addressed

using advanced techniques of machine learning and deep learning.

1.2 Social Media

Social media refers to websites and applications that enable users to create and

share content or to participate in social networking. The first social media sites

were developed in the early 2000s, leveraging interactive web applications. Since

then, social media has attracted a great deal of attention. Examples of popular

social media platforms include Facebook and Twitter with 2.5 billion monthly active

users [36] and 330 million monthly active users, respectively [35], as reported in 2019.

Traditional electronic media such as TV broadcasting or radio broadcasting

are mono-logic transmission models, where one-to-many communication protocol

is promoted. On the other hand, social media is based on a dialogic transmission

protocol, which allows many-to-many communication mechanism.

Social media nowadays has become an important communication channel for

connecting people. As reported by Pew Research Center [21], 72% of Americans use

at least one social media platform. As a result, social media has impact on various

fields from education to business and politics.

One of the advantages of social media is that the information is free and can

spread quickly. As social media platforms are usually used by numerous users, they

3https://hadoop.apache.org/
4https://spark.apache.org/

3

Chapter 1. Introduction

can act as human sensing systems. Research has shown that crowd-sourcing data

from social media platforms has correlations with different real-life events, thus the

social media data can be used in various applications such as epidemic outbreak

detection [89], air pollution monitoring [91], wildfire detection [193], stock trading

support [156], fake news detection [152] and social unrest detection [109]. On the

other hand, the information on social media platforms is often noisy, incomplete,

and sometimes not verified or misleading. Therefore, it is important to investigate

social media data, enhance its quality and exploit its huge volume and precious

value.

1.3 Smart City

Smart city is a concept recently arising with the growth of information and

communication technologies (ICT). Smart cities refer to cities where public resources

are better used, high quality of services is offered to citizens and at the same

time the operational costs of public administration are reduced [229]. To realize

these objectives of smart cities, urban Internet-of-Things (IoT) systems are often

leveraged. In smart cities, a plethora of useful ICT-enabled services can be provided

to citizens, including waste management, noise monitoring, smart lighting and air

quality monitoring, to name a few.

The use of the huge amount of heterogeneous pervasive IoT devices leads to

real-time streams of various types of data such as air quality, humidity and traffic

condition. The availability of these massive data streams creates many challenges

in data acquisition, data storage and management, data processing, data analytic

and visualization [51]. On the other hand, IoT data has potential in creating

transparency, supporting governmental decision makers, enhancing awareness of

people about their cities, and enabling new services for citizens [229].

Extracting values from a massive amount of heterogeneous IoT data is a

challenging problem given the nature of big data: noisy and incomplete. To leverage

the great potential of the IoT data, many works have been exploring different ways

to improve the pipeline of IoT big data, from retrieval, processing to analytics. Many

methods — ranging from data reduction and compression to deep learning — have

been used for the IoT data pipeline. In this thesis, we investigate the use of a special

branch of deep learning — the graph-based deep learning — to improve the quality

of IoT big data, which is an important step before values can be extracted.

1.4 Graph-based Deep Learning

Deep learning is a class of machine learning techniques, which aims to automatically

learn patterns from natural data in their raw form. In deep learning, multiple levels of

4

1.5. Motivations and Research Objectives

representations are used. In general, shallow levels of representation are less abstract

than deeper levels, which tend to amplify important features and suppress irrelevant

variations from the input [117]. Deep learning architectures are often realized by

deep neural networks. Typically, a deep neural network is created by stacking mul-

tiple simple but non-linear modules together, leading to the fact that very complex

functions can be learned. Deep learning has been widely and successfully used in

many domains, including computer vision (e.g., image classification [79], object

detection [175]), natural language processing (e.g., language modeling [45], machine

translation [203]), recommendation systems [233], physics [173], drug discovery [133],

computational biology [3], smart city applications [202], and quantum chemistry [64].

Recent years have witnessed an increasing interest in deep learning-based tech-

niques for solving problems in non-Euclidean domains, i.e., graphs and manifolds.

In order to handle data in such domains, graph-based deep learning models such as

graph neural networks (GNNs) have been proposed. Graph-based deep learning is

different from the typical deep learning architectures in the sense that it can capture

the structural information of graph-structured data, thus effectively handling the

correlation between datapoints (a.k.a., examples) while maintaining the ability

to learn high-level representation from raw data. For this reason, graph-based

deep learning has been gaining attention in solving problems involving graph-

structured data such as text classification [226], image classification [169], semantic

segmentation [167], question answering [201] and matrix completion [48].

1.5 Motivations and Research Objectives

Social media systems are real-time platforms with billions of users. Smart cities

employ a plethora of interconnected IoT devices. Social media and smart cities

therefore are common sources of big heterogeneous data. As discussed earlier, real-

time big data streams can bring many opportunities. However, there are challenges

needed to be addressed. Firstly, the data from social media and smart cities is

often noisy and incomplete. This links to the characteristic “veracity” of big data.

Secondly, exploiting the value of big data to gain insights is challenging as there

often exist correlations between samples of data. Although many methods have been

proposed, few methods have focused on exploiting these correlations. Therefore, it

is of importance to improve the quality of the big heterogeneous data and leverage

it in a proper way.

In this thesis, we aim to achieve three major goals. Firstly, we address the issue of

noisy and incomplete big data. Secondly, we leverage intricate structures of big data

for analytics, gaining insights about the data. The third goal, more fundamental,

is to explore existing graph-based models and improve their performance in general

tasks. The following sections present these goals in detail.

5

Chapter 1. Introduction

1.5.1 Improving The Quality of Big Data

Big data streams are often noisy. For instance, data from social media is generated

by users and there are often many typos or abbreviations made deliberately or un-

intentionally. Another example is that IoT data is produced and collected from low-

cost pervasive devices. Due to communication instability and busy communication

traffic, the IoT data may contain erroneous measurements which are far from true

values. We formalize this problem as a signal denoising problem. On the other hand,

there exist a great amount of missing values in big data streams. In case of IoT data,

communication and transmission errors create missing measurements. In addition,

in order to deal with energy consumption, many battery-powered IoT devices are

adapted with wake-up scheduling strategy, which results in coarse-grained data. For

social media data, users tend to ignore filling user profile information completely,

resulting in incomplete user records. Depending on specific problems, we can

formalize it either as a matrix completion or prediction problem.

1.5.2 Exploiting Big Data Structure for Analytics

There often exists underlying graph structure in big data, namely that big data

typically lives on graphs. For example, traffic information, collected at different

locations in a city, can be considered as a set of graph signals where such a graph

signal contains traffic measurements gathered at multiple nodes (locations) in the

same time instance; each node represents a location on the road network of the

city. On social media, users and their friendship connections or interactions form

a huge graph, which implies informative correlations between the users. Clearly,

properly leveraging the correlations in big data allows better exploitation of its

value. However, graph-structured data presents challenges for classical models (e.g.,

convolutional neural networks) as the data does not lie on regular structures (e.g.,

a regular grid). In order to do exploit effectively the structural information, we aim

at devising novel graph-based deep learning architectures, which can learn abstract

representations from data by considering its graph structure. We base our models

on recent works of graph representation learning and graph neural networks [235],

which has been proved effective in various tasks.

1.5.3 Improving Graph-based Deep Learning Models

The third goal of this thesis will focus on a more fundamental aspect that addresses

several existing problems of graph neural networks (GNNs). Many existing GNNs

are based on neural message passing [64]. Recently, formulations based on node

transition probabilities have been proven beneficial for multiple graph-based clas-

sification tasks [5, 232]. Nevertheless, such formulations have not received enough

attention from the research community. Additionally, the performance of deep GNNs

6

1.6. Considered Applications

Figure 1.1: An example of fake news on social media5. The figure on the left is a misleading post
on Twitter from a pro-Trump user regarding a technical issue of Apple map. The figure on the right
is an article talking about the same event published by Planet Free Will6, a website with historical
of publishing controversial news [87]

often decreases due to the presence of over-fitting and over-smoothing. Popular

regularization techniques have been used to mitigate the adverse effect of over-

fitting including `2 and dropout. However, performance gains brought by these

methods generally diminish as the models get deeper [103]. It is worth mentioning

that over-fitting is general, i.e., it happens for different types of neural networks.

On the other hand, over-smoothing [123, 26] is specific for deep GNNs as a result

of the inherent smoothing effect of these models, which makes node embeddings

indistinguishable and inseparable, leading to degraded performance in downstream

tasks such as node classification. Therefore, we aim at devising a novel neural

message passing mechanism and a new regularisation technique to address the

aforementioned challenges. By doing so, we hope to push the boundaries of existing

GNNs. Furthermore, as the considered problem is general, the new technique can

be applied to various applications involving the use of graph-structured data.

1.6 Considered Applications

Our considered applications focus on social media and smart cities as they are two

common sources of big heterogeneous data.

1.6.1 Applications for Social Media Data Analytics

The first objective is to improve the data quality of social media, i.e., to deal with

incomplete noisy data. Specifically, user profiles on social media are often incomplete,

e.g., locations of users are often not declared or filled with unrealistic places. For

5Figure taken from https://www.snopes.com/fact-check/apple-blocked-directions-capitol/
6https://planetfreewill.news/apple-blocks-directions-to-washington-d-c-ahead-of-trump-stop-

the-steal-rally/

7

Chapter 1. Introduction

Figure 1.2: Interconnected services provided by smart cities7

.

this reason, we consider predicting user location on social media. For the second

objective of analyzing big data, we consider fake news detection problem on social

media. Figure 1.1 shows an example of fake news on Twitter. It is observed that

fake news shared on social media shares some common characteristics such as they

have same publishers and are disseminated by suspicious social media users. By

leveraging this correlation structure, we aim to detect fake news with high accuracy.

1.6.2 Applications for Smart Cities Data Analytics

Figure 1.2 shows an example of smart city services. In smart cities, it is expected

that everything is connected and monitored in real-time, thanks to the advances in

IoT technology. Due to various services with a substantial number of parameters

monitored via IoT sensors, smart cities form a source — it is probably the most

prominent source — of big data. Similar to social media data, IoT data such as air

quality measurements often contain missing values and noise. We address this issue

by formulating a matrix completion on graphs problem for air quality prediction. In

addition, we also consider the problem of denoising traffic data; the traffic data is

collected from a large number of sensors located on roads. We leverage the capability

of graph-based deep learning in capturing structural information of big data to

7Figure taken from https://www.smartcitiesworld.net/news/news/smart-cities-services-worth-
225bn-by-2026-1618

8

1.7. Major Contributions

design novel models for these specific problems.

1.6.3 General Classification Problems: Graph and Node Clas-

sification

As mentioned earlier, the third objective of this thesis is to explore and improve

existing graph neural networks. We follow the majority of existing GNN works to

consider two essential applications, including graph classification and node classifica-

tion. In graph classification, a set of graphs is considered, where each graph is given

a unique label. The GNNs are then used to predict the labels for input graphs.

On the other hand, node classification focuses on predicting labels for individual

nodes instead of entire graphs. The former is normally studied under the supervised

setting; whereas the latter is usually considered under the semi-supervised setting.

Both applications have many popular real-life use cases in bioinformatics, computer

vision, and natural language processing (see Section 1.4 and Section 3.5).

1.7 Major Contributions

We have made a number of contributions concerning graph-based deep learning (i.e.,

graph neural networks) and the analytics of social media and smart city data. These

contributions fulfill the objectives mentioned earlier.

For social media analytics, we consider two problems, namely (i) predicting

of home location of social media users and (ii) detecting fake news. On social

network sites, the user home location is often noisy and missing, however, this

piece of information is essential for many third-party applications such as online

marketing and social unrest prediction. To address this problem, we propose a novel

multi-view deep learning architecture, exploiting both the streams of tweets and

the online interaction of the users [50, 49]. Likewise, the user-generated content

and users’ interaction are used for fake news detection [44]. In both cases, graphs

representing relationships between users are used, and they significantly contribute

to the performance of the proposed methods.

Concerning smart city data analytics, we consider two problems, namely (i)

hyper-local air quality inference and (ii) traffic data denoising. In the first problem,

our target is to predict air quality measurements at unmeasured locations and time

instances. By considering locations as nodes of a graph (i.e., road network), we cast

this problem as a matrix completion on graphs problem. We then create a novel

variational graph autoencoder model for hyper-local air quality inference [48]. In

addition, we leverage the correlation between different air pollutants to improve the

proposed model and extend it to a multimodal architecture, where an individual

pollutant represents a modality [51]. For traffic data denoising, we formulate it as

9

Chapter 1. Introduction

a signal denoising on graphs problem. The reconstructed signals are then obtained

by employing a graph autoencoder with a special global pooling mechanism [47].

Finally, we contribute to graph-based deep learning by introducing a new

message passing mechanism, which forms a building block for GNNs. In addition,

we propose a novel regularization technique for GNNs.

The first contribution in social media data analytics has resulted in three papers

including two papers published to the proceedings of an international conference

and an international workshop and one paper submitted to an Elsevier journal. On

the other hand, the contribution in smart city data analytics has resulted in one

IEEE journal and two papers in international conferences. Lastly, our contribution to

graph neural networks (GNNs) has been summarized in a paper, which is submitted

to another Elsevier journal.

1.8 Content Outline

The structure of this thesis is organized as follows. In Chapter 2 and Chapter 3,

we cover the fundamental knowledge and state of the art for deep learning and

graph-based deep learning, a.k.a., geometric deep learning. Chapter 4 presents the

two applications of graph-based deep learning in social media mentioned earlier.

Likewise, the applications of graph-based deep learning for smart cities are shown

in Chapter 5. Chapter 6 focuses on existing problems of GNNs and we introduce

a new message passing mechanism together with a novel technique for regularizing

GNNs. Finally, our conclusion and vision on future work are drawn in Chapter 7.

10

Chapter 2

Background on Deep Learning

2.1 Introduction

The start of machine learning dates back to the 1950s of the last century. Machine

learning is a vast area involving a huge amount of research work. Many classical

algorithms of machine learning such as support vector machines or random forests

have found real-life applications. The evolution of machine learning has led to the

emergence of deep learning which leverages the power of deep neural networks.

Major breakthroughs in deep learning and its applications have been reported. In

this PhD thesis, we embrace the deep learning paradigm and leverage its strength to

address various problems. Therefore, it is essential to introduce the fundamentals of

deep learning and machine learning including concepts and well-established models.

In this chapter, we firstly review major categories of machine learning including

supervised learning, unsupervised learning and reinforcement learning. Secondly, we

cover the most fundamental building blocks for deep learning including artificial

neural networks (ANNs) and their prominent variants such as recurrent neural

networks (RNNs) and convolutional neural networks (CNNs). Recent years have

witnessed the rapid growth of deep learning, and many new concepts tied to

deep learning have been introduced. Therefore, we also selectively go through

new concepts and trends which are partly related to our contributions presented

in later chapters. These concepts include attention neural networks, generative

models, multiview learning, and end-to-end learning. Lastly, as most of deep learning

algorithms boil down to the optimization of loss functions, thus popular concepts

and algorithms such as gradient descent and Adam optimization [101] used for

optimizing neural networks’ loss functions are covered.

11

Chapter 2. Background on Deep Learning

2.2 Machine Learning

Machine learning involves computer programs that are capable of learning to do

some tasks without explicit rules. A machine learning program can be formally

defined as follows [141]:

A computer program is said to learn from experience E with respect the task

T and performance measure P if its performance on the task T improves with the

experience E.

Conventionally, there are three classical categories of machine learning, namely

supervised learning, unsupervised learning, and reinforcement learning. In supervised

learning, labels of training data are available during the training step. Specifically,

given a set of training example {xi}ni=1, each example is given a label li, supervised

learning algorithms learn a function f such that

f(xi) = li. (2.1)

If the label li is discrete, the problem is often referred to as classification. Otherwise,

the problem is called regression if li is continuous. Image semantic segmentation [167]

and sentiment analysis [174] are examples of classification while stock price predic-

tion [156] and temperature prediction [66] are examples of regression.

Unsupervised learning is another important category of machine learning. In

unsupervised learning, labels are not available. Instead, unsupervised learning

algorithms attempt to learn hidden patterns of the data using only the data itself.

One of the most important applications of unsupervised learning is to cluster data

into groups. Recent advances in deep learning lead to new uses of unsupervised

learning in data compression (e.g., autoencoder) or generative models.

The third type of machine learning is reinforcement learning. Different from the

supervised learning and unsupervised learning, reinforcement learning is learning

what to do, namely how to choose optimal actions in order to maximize a reward

signal. During training, the learner (a.k.a., agent) discovers what actions it should

take via a trial-and-error strategy. In most cases, the goal is to achieve the highest ac-

cumulated reward instead of the immediate reward after an action; the accumulated

reward is often referred to as delayed reward. The main elements of reinforcement

learning are policy, reward signal, value function and environment model [199]. The

policy is the mapping from the states of the environment to actions. The reward

signal defines the goal of a reinforcement learning problem and it indicates the

immediate result of an action. The value function instead indicates what is good

in a long-run sense. Finally, the environment model allows us to predict how the

environment behaves given an action of the agent. We refer those who are interested

in the reinforcement learning to the book written by Sutton et al. [199] for more

details.

12

2.3. Deep Learning

2.3 Deep Learning

Deep learning leverages the capacity of deep neural networks to learn efficient

representations of data by passing through a series of layers. In this section, we

briefly go through basic models of deep learning such as artificial neural networks,

convolutional neural networks and recurrent neural networks. Afterwards, advanced

concepts and trends in deep learning will be discussed.

2.3.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) were first introduced by psychologist Frank

Rosenblatt in 1958 with the name perceptron [180], which is also known as feedfor-

ward neural network. Since then, variants of ANNs have been proposed and many

of them have been applied for a wide range of applications.

The ANNs are inspired by the biological structure of neurons in human brain.

Specifically, a biological neuron uses dendrites to obtain input information, processes

the information using its nucleus and spreads output information via its axon. ANNs

consist of multiple artificial neurons, a.k.a., units; each unit receives information

from other units and processes the information using some sorts of transformation

before sending the processed information to its neighbors. In the literature, there

exist many forms of ANNs. Among them, feedforward neural networks — a.k.a.,

fully connected neural networks — are the most widely used. A feedforward neural

network is created by stacking a handful of layers together; each layer consists

of many units. Morover, a unit in one layer is connected to every unit in the

immediately previous and next layers. Figure 2.1 shows a classical example of a

feedforward ANN.

Over the last few years, given the advances in computation capacity and

optimization techniques and the availability of big datasets, there has been a trend

in automatically learning data representations by using many layers in neural

networks, leading to models capable of learning highly complex functions; this

approach is commonly referred to as deep learning. Convolutional neural networks

(CNNs) and recurrent neural networks (RNNs) are two representative deep learning

architectures. CNNs are originally designed for computer vision tasks though its

applications have been extended to other fields such as natural language processing.

RNNs are mainly employed for tasks involving sequential data, e.g., speech, videos

and text. The details of these deep learning architectures will be discussed in the

following sections.

13

Chapter 2. Background on Deep Learning

𝑥!

𝑥"

𝑥#

𝑎!
(!)

𝑎$
(!)

𝑎%
(!)

𝑎&
(!)

𝑎'
(!)

𝑎"
(")

𝑎#
(")

𝑜!

𝑜"

𝑎!
(")

Figure 2.1: A simple fully connected feedforward neural network with four layers: the input layer

containing entries xi, the intermediate layers containing activations a
(i)
j , and the output layer of

entries ok.

1
2

…

… …

Input Image Convolution + ReLU Pooling Flatten Fully Connected Layers Softmax

Figure 2.2: A convolutional neural network with convolutional, pooling and fully connected layers.
Typically, the subsequent convolutional layers have smaller spatial size but higher channel dimen-
sion. The output of the final convolutional layer is flattened out to obtain a vector representation
of the input image. Several fully connected layers are often used together with a softmax classifier
to obtain class probabilities.

2.3.2 Convolutional Neural Networks

Prior to the invention of CNNs, fully connected neural networks (FCNs) were used

for computer vision tasks such as image classification. Although good performance

has been reported, it was realized that FCNs do not exploit spatial correlation of

nearby pixels efficiently. In order to address this issue, CNNs have been developed.

CNNs are advanced neural network models, capable of exploiting spatially local

correlation of data. CNNs are usually used for tasks related to computer vision such

as image classification, object detection, semantic segmentation [175, 117]. On the

other hand, it has been reported that CNNs work well for several tasks for sequential

data such as natural language understanding [117]. Figure 2.2 shows an example of

CNNs.

14

2.3. Deep Learning

Figure 2.3: Local connectivity in convolutional layers [97]

Similar to FCNs, a CNN is formed by combining different layers; each layer is

comprised of multiple units. However, unlike FCNs, a CNN usually employs multiple

convolutional layers, which can effectively extract local features. Furthermore, a unit

in a convolutional layer is not fully connected to units in the previous layer. Instead,

it is locally connected to a subset of units in the previous layer. The essential building

blocks of CNNs include convolutional layers, pooling layers and fully connected

layers. In the following, we compactly summarize the building blocks of a CNN.

Convolutional Layer

Convolutional layers, abbreviated to CONVs, are the most important building block

of CNNs, which differentiate them from other neural network architectures. By

using convolutional layers, the number of parameters of CNNs is reduced. This

alleviates the burden of expensive computation, making CNNs practical for real-

time applications such as real-time object detection (e.g., You Only Look Once

[YOLO] [175]).

Conceptually, a classical convolutional layer contains a set of units organized in

a 3D volume. Each unit is locally connected to the units of a bounded area of the

previous layer. This locality characteristic is illustrated in Fig. 2.3.

A convolutional layer (e.g., layer i-th) typically takes as input a 3D tensor of

shape [Hi ×Wi ×Di] (i.e., Hi, Wi and Di indicate the height, width and depth of

the tensor) and produces an output tensor with dimensions [Hi+1 ×Wi+1 ×Di+1].

This operation is implemented by employing a set of filters (a.k.a., kernels). It is

easy to think of a filter as a small 3D tensor of shape [Fi × Fi × Di] where each

entry of the tensor is a parameter (a.k.a., weight). Having defined the filter, the

convolutional layer moves the filter horizontally and vertically around the input

tensor then computes sum of element-wise multiplications between the entries of

the filter and corresponding receptive field. It is worth noting that this convolution,

which the correct name is “cross correlation”, is slightly different from the traditional

convolution in signal processing, which requires flipping of the filter. The moving

step of the filter is called stride, denoted by S. Depending on design choice, padding

15

Chapter 2. Background on Deep Learning

at the edges of the input tensor could be used or not. This operation outputs a 2D

tensor. Consequently, a set of Di+1 filters will produce a 3D tensor by combining

Di+1 2D tensors mentioned earlier. Denote the padding size by P , the relations

between dimensions of the input tensor, output tensor and the filter can be expressed

by [97]:

Hi+1 =

(
Hi − Fi + 2P

)
S

+ 1, (2.2)

Wi+1 =

(
Wi − Fi + 2P

)
S

+ 1. (2.3)

The output tensor of a convolutional layer is often activated using a non-

linear function such as rectified linear unit (ReLU), sigmoid or hyperbolic tangent

(tanh) [97]. ReLU is the most common choice among the activation functions. Below,

we provide the definitions of the aforementioned functions:

ReLU(x) = max(0, x), (2.4)

sigmoid(x) =
1

1 + e−x
, (2.5)

tanh(x) =
ex − e−x

ex + e−x
. (2.6)

Recent advances in deep learning have led to various types of convolutional

layers. Yu et al. introduced dilation to convolutional layers, where gaps between

entries in the input tensor are considered [228]. A more recent work proposed depth-

wise (separable) convolution, which allows a significant reduction in the number

of parameters and the computational complexity. This technique, therefore, can be

used for building lightweight models running on mobile devices [83, 34].

Pooling Layer

Pooling layers are commonly used in convolutional neural networks. In CNNs, a

pooling layer is often placed after a convolutional layer. The purpose of the pooling

layers is to reduce the spatial dimensions of intermediate representations, thus it

helps in addressing over-fitting and reducing the computation burden.

A pooling layer in convolutional neural networks does not have any parameter.

It takes as input a tensor of shape [Hj ×Wj × Dj] and outputs a tensor of shape

[Hj+1 ×Wj+1 × Dj+1], where Dj = Dj+1, by leveraging a filter with dimensions

[Fj×Fj]. Similar to convolutional layers, let Sj denote the moving step of the filter.

The relation between the size of input and output tensors can be written as follows:

16

2.3. Deep Learning

Wj+1 =
Wj − Fj

Sj
+ 1, (2.7)

HJ+1 =
Hj − Fj
Sj

+ 1. (2.8)

The most common pooling operation is max pooling. The other forms of pooling

include mean pooling (average pooling) and l2 norm pooling. It is worth noting

that in case of max pooling, the back propagation of the gradient through the

corresponding max pooling layer needs to be adapted. Specifically, the gradient

only flows backwards via the max entries.

Fully Connected Layer

The fully connected layers (FCs) are normally used at the very end of the con-

volutional neural networks. The main purpose of FCs is to obtain the final vector

representation of the input data for the considered downstream task. For example, a

final convolutional layer produces a 3D tensor, which is then flattened into a vector

(see Fig. 2.2). If the considered task is classification, a softmax classifier is attached

to the FCs to transform the vector into class probabilities.

2.3.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a special type of artificial neural networks.

RNNs are usually employed to handle sequential data such as text, speech, audio

or video as they are capable of capturing temporal dependencies in the data.

RNNs have been successfully used in tasks involving sequential data such as

speech recognition [69], text classification [128], machine translation [198], image

captioning [209] and video reconstruction [115].

The major difference between RNNs and the aforementioned neural network

models (i.e., FCNs and CNNs) is that the RNNs can have loops in their architecture,

namely a unit can have a self-connection. By using the loops, RNNs can take into

accounts the previous states, whereas the other types of neural networks are not able

to consider the previous states. This is the advantage of the RNNs, which makes

them suitable for sequential data. For instance, in language modelling tasks, models

attempt to generate a word based on previous ones. Memorizing the previous states,

namely previous words, will allow the RNNs to predict correctly the next word. The

same reasoning applies for various tasks such as video frame prediction or machine

translation. Figure 2.4 shows a classical RNN model with its unrolled architecture.

Many variants of RNNs have been proposed. The most widely known and

used RNNs are the long short-term memory networks (LSTMs) [81] and the gated

17

Chapter 2. Background on Deep Learning

Figure 2.4: A recurrent neural network with self-connection (left) and its unfold architecture
(right). Image source: Nature.

(a) Visual attention (b) Textual attention

Figure 2.5: Attention mechanism applied to image classification (a) and text classification (b).
In both cases, interesting parts are highlighted. In (a), the original images are on the first column
on the left and the right most column contains features of the images with attention mechanism
applied. In (b), the text is a review and the task is to classify into 5 recommendation levels, from
the worst (level 1) to the best (level 5). The predicted class, namely 4, is explained by highlighting
positive words. The images are taken from [210] and [225].

recurrent neural networks (GRUs) [32]. Both networks introduce additional gates,

which modify the handling of internal states of the networks. As a result, both

networks are able to handle the long-term dependencies of sequential data, which is

a difficult task for the classical RNNs caused by the vanishing gradient problem [157].

However, RNNs have been losing popularity recently as they are highly computa-

tionally expensive. Training large RNNs could take days or weeks depending on the

size of the input dataset and the computational resources. A new type of architecture

has been devised for handling sequential data, often referred to as attention neural

networks. We will discuss this type of neural networks in the next section.

18

2.3. Deep Learning

2.3.4 Attention Models: Towards Interpretability

Attention is an advanced mechanism used recently in deep neural networks. Atten-

tion can be integrated to well-established FCNs and more advanced models such as

CNNs and RNNs to boost their performance. Alternatively, the attention mechanism

could form individual models, independent from the mentioned architectures. In

addition, the attention mechanism brings transparency to neural networks, which

are often considered black boxes. Due to recent major breakthroughs in natural

language processing (e.g., Transformer [203], BERT [45]), attention models have

been increasingly used in many areas.

The attention mechanism works in a way similar to how human biological systems

process information. For instance, when looking into images, our visual system

selectively focuses on important regions and ignores the irrelevant parts. The human

language is processed in a similar manner; we tend to pick important words or

phrases from a sentence or a paragraph while neglecting the remainder. In many

cases, we as human do not need to read the text entirely in order to understand

it. However, this does not affect the perception of human to the input information

but it helps to improve the processing speed. Following this principle, the attention

mechanism allows neural network models to pay attention to specific parts of the

input data, leading to better performance and lower computational cost. In addition,

the attention mechanism enables the interpretability of neural networks. Specifically,

by introducing attention coefficients, it is easy to know which regions of an image

or which parts of a paragraph are prioritized by the model via observing these

coefficients. Figure 2.5 shows the results of applying an attention mechanism on

image classification and text classification tasks.

In general, attention models employ an attention function to map a query and

a set of key-value pairs to an output [203]. Firstly, it computes the relevant scores,

a.k.a., attention coefficients, between the query and keys using a compatibility

function, then it uses these scores to achieve a weighted sum of the values.

Denote by matrix Q ∈ Rn×dk the set of queries and let matrices K ∈ Rm×dk ,

V ∈ Rm×dv describe sets of keys and values. The relevant scores are computed

using a compatibility function:

scores(Q,K) = f(Q,K). (2.9)

The scores are then used to calculate the weighted sum of the values V as follows:

Attention(Q,K,V) = f(Q,K)× V . (2.10)

In (2.9), f is a compatibility function chosen by the design of attention models.

Different functions have been used for attention models including dot product, scaled

dot product, or even a feed-forward neural network [212]. A comprehensive details

19

Chapter 2. Background on Deep Learning

Figure 2.6: Approximation of underlying data distribution with a parametric model pθ. Image
source [57].

of the compatibility functions, however, are beyond the scope of this thesis.

A common extension of the attention mechanism mentioned earlier is multi-head

attention, where multiple linear projections of Q,K and V are considered. Each

projected tuple (Q(i),K(i),V (i) is applied the attention function to produce an

output. These outputs are then linearly combined to obtain the final multi-head

attention output. The multi-head attention mechanism has been used successfully

in many problems , especially NLP-related tasks. [203].

2.3.5 Deep Generative Models

Generative models are a special kind of machine learning models, which are able

to learn an underlying distribution of observed data. Considering a given dataset

D = {x(i) ∈ D, i = {1, . . . , |D|}}, the dataset is a finite sample of an underlying

distribution pdata such that x(i) ∼ pdata,∀x(i) ∈ D. A generative model aims at

approximating the underlying distribution pdata with a parametric model pθ, where

the parameters θ belong to a model family M. The learned models can be used for

downstream inference tasks such as density estimation, sampling (a.k.a., generating

new examples, which are similar but not the same with the examples in the given

dataset) and representation learning [57].

In order to learn θ, we aim to solve the following optimization problem

min
θ∈M

d (pdata, pθ) , (2.11)

where d(.) denotes the distance between the true distribution pdata and the para-

metric one pθ. Figure 2.6 illustrates the learning objective of generative models

In previous sections, we have discussed different types of machine learning

and deep learning models. Most of these models are discriminative, namely given

an observed dataset and its labels, the discriminative models attempt to learn a

conditional distribution between the dataset and labels. Denote by X the random

variables representing a datapoint, and Y the random variables representing the

corresponding label, a discriminative model can be exressed by pθ(Y |X). On the

20

2.3. Deep Learning

other hand, a generative model aims to learn a joint distribution between the dataset

and its label, namely pθ(X,Y). In addition, conditional generative models can be

formulated by considering pθ(X|Y).

Depending on the model family M, there are different objective functions and

optimization algorithms for learning θ. In the literature, there are four major

types of generative models, including autoregressive models, variational autoencoders

(VAEs), normalizing flow models and generative adversarial networks (GANs). In

what follows, we present the fundamentals of the VAEs as a part of our contributions

is based on the VAEs.

Variational Autoencoders

Variational autoencoders (VAEs) [102] are generative models that have lately

received considerable attention. The VAEs are built on the assumption that the

data points in a dataset can be drawn from a distribution conditioned by latent

variables. VAEs learn a mapping from the latent variables to the observed data.

Let x denote a random vector and z a vector containing the latent variables.

We assume that z follows a standard Gaussian distribution p(z), and x is generated

from some conditional distribution p(x|z). We consider an approximation q(z|x) to

the true posterior p(z|x). Following [102], we assume that q(z|x) is a multivariate

Gaussian, that is,

q(z|x) = N
(
µ,σ

)
, (2.12)

where µ = fµ(x,Θ1) and σ = fσ(x,Θ2) are the parameters of the distribution.

The generative process is characterized by

p(x|z) ∝ fz(z,Φ). (2.13)

It should be noted that the functions fµ, fσ and fz are often implemented by

neural network layers and their parameters Θ1,Θ2 and Φ are learned from data.

To find the parameters, one needs to minimize the following objective function:

L = −Eq(z|x)

[
log p(x|z)

]
+D

[
q(z|x)‖p(z)

]
. (2.14)

In (2.14), the first term can be interpreted as the reconstruction error. The second

term is the Kullback-Leibler (KL) divergence between q(z|x) and the prior p(z),

and can be considered as a regularization constraint; it can be computed with a

closed form formula [102].

2.3.6 Multiview Deep Learning

Multiview learning refers to machine learning methods which deal with multiple

distinct feature sets [197]. The feature sets can be extracted from different types of

21

Chapter 2. Background on Deep Learning

information (views) of the same data source or from multiple data sources. In the

latter case, it is often referred to as multimodal learning [151]. The recent success of

deep learning has brought together deep learning and multiview processing, leading

to a new trend: multiview deep learning.

Real-world datasets are usually multivew data containing diverse types of infor-

mation. For example, videos consist of video frames and audio while images can be

characterized by colour and texture. Likewise, social media posts are often associated

with video(s), photo(s), comments and interactions (e.g., likes, shares, etc.). As a

third example, air quality data usually consists of measurements of several pollutants

such as NO2, PM10 and PM2.5. Because of the increasing availability of multiview

datasets, it is tempting to exploit different views of the data for downstream tasks.

Classical multiview learning methods can be categorized into three types in-

cluding co-training, multiple kernel learning and subspace learning [221]. In co-

training, two views are normally considered where the learning algorithm tries to

maximize the agreement between the two views. Multiple kernel learning (MKL) is

based on multiple kernels where each kernel corresponds to an individual view.

MKL then combines kernels either linearly or non-linearly to improve learning

performance [221]. The third multiview learning category focuses on obtaining latent

representations, which are assumed to generate the observed features of the input

views.

In modern multiview learning (multiview deep learning), deep neural network

architectures are usually employed thanks to their flexibility in combining multi-

source data. Usually, a multiview deep learning model may have multiple inputs;

each input corresponds to a data source. Figure 2.7 illustrates an example for a

multiview deep learning model. The goal of the modern multiview deep learning

is to either align different representations of the views (alignment goal) or learn a

shared representation of different views (fusion goal) [125]. For the first goal, the

learning algorithm constrains the representations using some certain metrics based

on distance or correlation. Popular methods attempting to achieve the first goal

include cross-modal factor analysis (CFA), canonical correlation analysis (CCA)

and its family (e.g., sparse CCA, Kernel CCA, deep CCA), partial least squares

and cross-modal ranking [125]. On the other hand, the second goal is achieved by

using some fusion functions, such as concatenation, view pooling and multinomial

sampling [33]. We refer the interested readers to the survey by Li et al. [125] for

more details.

2.3.7 End-to-end Learning

End-to-end learning refers to the direct mapping of input data to the decision

without using intermediate processing steps. Traditional machine learning methods

usually require a possibly complex processing pipeline with multiple components.

22

2.3. Deep Learning

Figure 2.7: A multiview deep learning architecture with two inputs including image and text.
The joint representation is created by combining latent representations of the image and text
inputs [151].

MFCC ML
Algorithm Transcriber

Transcrip
t

Audio Signal Feature Exaction Phoneme Recognition Phoneme-to-text Transcript

Feature Phoneme

Figure 2.8: A classical speech recognition pipeline with different steps.

Transcrip
t

Audio Signal Transcript

Deep
Learning
Model

Figure 2.9: An end-to-end deep-learning-based speech recognition system.

The output of this pipeline is the representation of the data, which is suitable for the

machine learning models. On the contrary, end-to-end learning follows an elegant

and straightforward approach by replacing the processing pipeline with neural

network layers. In the context of deep learning, end-to-end learning is increasingly

being used thanks to deep neural networks’ capacity in learning effectively data

representations.

To see better the difference between end-to-end learning and traditional machine

23

Chapter 2. Background on Deep Learning

learning methods, let us consider the task of speech recognition where we want

to obtain transcripts from input speech. Classical speech recognition methods use

some algorithms (e.g., MFCC) to extract speech features. The features are then

put into a machine learning algorithm (e.g., support vector machine) to obtain

phonemes. Finally, the phonemes are assembled to make the final transcript. With

end-to-end learning, we can go directly from the input speech to the transcript

using a deep neural network, skipping the steps in between. Figures 2.8 and 2.9

illustrate the difference between a classical speech recognition system and an end-

to-end deep-learning-based system. End-to-end deep learning models have achieved

good performance in several applications including image recognition [217], speech-

to-speech translation [211] and video captioning [236].

End-to-end learning has several advantages and disadvantages. Firstly, it is

conceptually simple, namely an end-to-end system can be trained holistically. The

learning process is directed by an overall objective function, ignoring the need for

auxiliary objectives such as contrastive divergence [65]. Besides, end-to-end learning

removes the hand-designing components, thus it helps simplify machine learning

based systems. On the other hand, ignoring prior knowledge embedded in hand-

designing components means much more data is needed. In practice, it is challenging

to obtain enough data to train end-to-end models, especially for complex tasks

such as autonomous driving, whereas in case a large amount of data is available,

end-to-end models can work very well. For this reason, it is advised that hand-

engineering features should be employed in case large datasets are not available [150].

Furthermore, it is envisioned that individual learning modules should be considered

instead of building en entire end-to-end learning system if the respective learning

tasks are completely different. For instance, a visual representation learning module

and a policy learning module should be trained individually, otherwise the learning

signals will be insufficiently informative [65].

2.4 Optimising The Objective Function

The parameters (weights) of neural networks are learned during training by op-

timising respective objective functions. For instance, a neural network model for

regression could employ a mean squared error (MSE) function as its objective

L(θ) =
1

2n

n∑
i=1

(
ỹ(i) − y(i)

)2
, (2.15)

where θ is model’s parameter, n is the number of examples, y(i) is the i-th ground-

truth value and ỹ(i) denotes the corresponding predicted value. Alternatively, a

24

2.4. Optimising The Objective Function

cross-entropy loss function is typically used for classification problems:

L(θ) = −
n∑
i=1

m∑
j=1

y
(i)
j log(ỹ

(i)
j). (2.16)

In (2.16), n is the number of examples, m is number of classes, ỹ(i) denotes the

one-hot ground-truth label vector for the i-th example, y(i) is the vector holding

the predicted probabilities of the i-th example for each class. ỹ
(i)
j and y

(i)
j denote

the j-th elements of the respective vectors.

Different types of loss objective functions have been introduced for specific tasks

such as mean absolute error (MAE), hinge loss, cosine loss and Kullback-Leibler

divergence loss [86].

Generally, there exist two major approaches for optimizing a function f , namely

derivative-based and derivative-free. The derivative-based methods use derivative

information of the function to search for a good direction towards local optima. Using

the derivative information is very efficient providing that the domain of function

f is connected, f is smooth, and its derivative is tractable to evaluate. Popular

examples of derivative-based methods are gradient descent, conjugate gradient, and

Quasi-Newton methods. If the aforementioned conditions on f are not satisfied,

the derivative-free methods are often employed. Noticeable methods following the

derivative-free approach include Bayesian optimization, genetic algorithms and

coordinates descent.

In deep learning, as loss functions often satisfy the conditions mentioned earlier,

derivative-based algorithms are widely used, especially algorithms based on the

gradient such as gradient descent. Gradient descent is commonly used for training

deep neural networks with a substantial number of parameters as it is much less

computationally expensive compared to others, e.g., second-order derivative Quasi-

Newton methods. A great number of achievements have been reported with using

the gradient descent algorithm. In a nutshell, the gradient descent algorithm updates

parameters θ ∈ Rm gradually using the gradient vector

θj = θj − α
∂L(θ)

∂θj
, (2.17)

where j ∈ [1,m] and α ∈ R is a small positive number, termed learning rate. Neural

networks can be trained using (2.17) (see Algorithm 1).

In practice, datasets can be very large with hundreds of thousands examples,

making gradient descent expensive to compute. In order to overcome this issue,

stochastic gradient descent (SGD) and mini-batch gradient descent (MGD) have

been used, where only one or a number of examples are considered in each updating

iteration. It turns out that stochastic gradient descent causes more fluctuations than

the ordinary gradient descent. However, as the gradient is calculated much more

25

Chapter 2. Background on Deep Learning

Algorithm 1: Training with gradient descent

input: Parameter Θ, training samples X, learning rate α, labels y,
stopping condition C

1 initialization: Randomly initialize Θ ;
2 repeat
3 L(Θ)← forward(Θ; X,y) ;

4
∂L(Θ)
∂Θ ← backward(Θ;L,X) ;

5 Θ← Θ− α∂L(Θ)
∂Θ

6 until C is met ;

often, the convergence speed of the SGD and MGD could be improved significantly,

and these methods can be used to learn online [182].

Being stuck in local minima is one well-known problem of using gradient descent

for training neural networks. Therefore, many improvements and modifications have

been introduced to gradient descent, including momentum, Nesterov accelerated

gradient (NAG), Adagrad , Adadelta, RMSprop and Adam (Adaptive Moment

Estimation) [182]. Up until now, the Adam optimization algorithm [101] is one of

the most commonly used methods in the deep learning literature. In what follows,

we discuss the essentials of the Adam optimization algorithm.

Let gt denote the gradient of a function to be optimised at iteration t, the first

and second moments (a.k.a., mean and uncentered variance) of the gradient are

given by:

mt = β1mt−1 + (1− β1)gt (2.18)

vt = β2vt−1 + (1− β2)g2
t . (2.19)

In (2.19), g2
t denotes element-wise squaring. As Adam initializes mt and vt with

vectors of 0’s, there is a bias towards zero. Adam therefore corrects this bias as

follows:

m̂t =
mt

1− βt1
, (2.20)

v̂t =
vt

1− βt2
. (2.21)

The updating rule of Adam is then defined by:

θt+1 = θt −
α√

v̂t + ε
m̂t. (2.22)

26

2.5. Regularization

𝑥!

𝑥"

𝑥#

𝑎!

𝑎"

𝑎#

𝑎$

𝑜!

𝑜"

𝑥!

𝑥"

𝑥#

𝑎!

𝑎"

𝑎#

𝑎$

𝑜!

𝑜"

(a) Fully connected neural network (b) Dropout effect

Figure 2.10: A fully connected neural network (a) and the effect of dropout regularization during
training (b). The dropout rate is p = 0.5.

In (2.18), (2.19), and (2.22), β1, β2 are small positive numbers — the default

values for β1 and β2 proposed by the authors of Adam are 0.9 and 0.999, respectively.

ε is a small constant to avoid division by zero, set by default to 10−8. It is worth

mentioning that Adam is an adaptive algorithm, i.e., the learning rate is adjusted

for each parameter θi. This behaviour is similar to the Adagrad, Adadelta and

RMSProp algorithms mentioned above.

Recently, many adaptive gradient-based optimization algorithms have been

proposed including AdamW [129], QHAdam [134], YellowFin [230]. On the other

hand, there is a trend in using non-adaptive algorithms such as including SGD

with momentum (SGDM), Aggmo (Aggregated Momentum) [130], QHM (Quasi-

Hyperbolic Momentum) [134] and Demon (Decaying Momentum) [29]. Suprisingly,

researchers have found that using SGD with momentum can achieve better perfor-

mance compared to the adaptive algorithms [28]. While it is tempting to explore

these optimization methods, the study of these methods is beyond the scope of this

thesis.

2.5 Regularization

It is widely known that when the number of parameters of a model is increased, the

expressiveness of the model is improved, thus it is easier to fit the model to a given

dataset. On the other hand, the generalization of the model may be harmed, namely

the performance of the model is worse on unseen examples. The situation when a

model performs well on the training dataset and poorly on the test dataset is termed

over-fitting. Over-fitting happens in most of machine learning models when they

fail to generalize to new examples. In deep learning, as the number of parameters

is usually very large (e.g., BERT [45] has approximate 345 million parameters),

deep-learning-based models are more prone to over-fitting. This renders the need to

regularize deep learning models for better generalization on unseen datasets.

27

Chapter 2. Background on Deep Learning

Many regularization techniques have been introduced to address the over-fitting

issue. One of the classical regularization techniques is early stopping. Specifically,

this method relies on training and validation datasets. During the training of a

machine learning model, the performance of the model on the validation dataset

is continuously monitored. If the validation performance does not improve after

a patience threshold δ, this signifies the start of over-fitting, thus the training is

terminated. Early stopping has been widely used in both classical machine learning

algorithms and deep learning models.

The l2 regularization, which which is based on constraining the l2-norm of the

vector of parameters, is also commonly employed to handle over-fitting. Let L(θ)

denote the loss function of a model, l2 regularization is formed by adding an auxiliary

term to the loss function

L̃(θ) = L(θ) + λΩ(θ), (2.23)

where λ is a small positive number (a.k.a., regularization coefficient) and Ω(θ) =
1
2‖θ‖

2
2. The reasoning behind l2 regularization is that by minimizing the modified

loss function, the parameters of the considered model will have values close to zero.

This helps in reducing the complexity of the original model, thus it mitigates the

effect of over-fitting. In many cases, l1 regularization is used instead of l2, where

Ω(θ) = ‖θ‖1 =
∑
i |θi|. Using l1 regularization leads to sparse θ, which may be

helpful in case we need to compress the model.

Another approach to address over-fitting is called data augmentation. This

approach aims to increase the diversity of the training data, improving the gen-

eralizability of the considered model. This approach is often used for images (e.g.,

by cropping, rotating and flipping existing images in the dataset one can create new

data samples), thus it is often applied in training convolutional neural networks.

However, there exist some data synthesizing techniques for structured data like

ADASYN [78] and SMOTE [25], which can be used for classical models.

Over the last several years, dropout has become a standard regularization

technique for regularizing deep neural networks [195]. The basic idea of dropout

is to randomly deactivate hidden units in a neural network during the training

process following a Bernoulli distribution. During the inference phase (i.e., testing),

all the activation units remain active.

Dropout regularization is motivated by the reproduction mechanism of the

most advanced organisms in our world [195]. In this reproduction approach, genes

develop the ability to collaborate with a small random set of other genes, leading

to robustness. Likewise, a hidden unit in a neural network is enforced to work with

a random sample of other hidden units. This encourages the hidden unit to learn

useful features itself, reducing its dependency on other hidden units.

Figure 2.10 illustrates how dropout works in case of fully connected neural

networks. The reason why dropout works can be justified thanks to the ensemble

28

2.6. Conclusion

principle. That is to say, by randomly dropping hidden units, various thinned

versions of a neural network are created and trained during the training process;

all these networks share a large part of their parameters. During testing time, these

thinned models are combined by activating all the units in the original network. This

operation simply approximates the averaging of outputs of all the thinned versions

of the model [195], leading to an improved inference performance. Drophout has

been widely applied in various network architectures such as CNNs and RNNs for

different applications with noticeable successes.

2.6 Conclusion

In this chapter, basic concepts of machine learning and deep learning were covered.

We mainly focused on deep learning, on which most of our works are built. While it

is hard to cover all the aspects of deep learning (and it is outside the scope of this

thesis) as deep learning is a vast area, the basic principles and recent trends in deep

learning related to the research reported in this thesis were introduced. They include

deep CNNs, deep RNNs, multiview deep learning, attention, generative models, and

regularization. In the next chapter, we introduce a special class of deep learning

named graph-based deep learning capable of handling graph-structured data. Graph-

based deep learning is the central technique used throughout this thesis.

Latest trends in machine learning, deep learning and AI include self-supervised

learning, auto machine learning (AutoML), emotional AI, and edge AI, to name a

few. Although great effort has been spent on research in machine learning, deep

learning and artificial intelligence in general, and even machine learning-based

systems are now better than human in many individual tasks, the ability of building

a general artificial intelligence system still remains elusive. Thus the quest for novel

methods to improve artificial intelligence still goes on.

29

30

Chapter 3

Background on Graph-based Deep

Learning

3.1 Introduction

Traditional data such as images, audio, or videos have been investigated thoroughly

by researchers. To deal with this regular type of data, different types of deep neural

networks have been proposed, including convolutional neural networks (CNNs),

recurrent neural networks (RNNs), and attention based neural networks (see Chap-

ter 2). A large number of variants of these neural network architectures has also

been introduced in order to address domain specific problems. It is worth noting

that most of these deep learning models consider individual examples separately.

For instance, a deep CNN model for image classification takes as input an image,

computes class probabilities, and adjust its parameters based on the comparison

between the output probabilities and the ground truth. However, real-world datasets

often contain inherent correlations between examples. For instance, spatial and

temporal correlations are usually observed in air quality measurements [48]. Also,

location correlation is often seen between online users of social media platforms [49].

Individual articles shared on social media may also have common users who interact

with the articles [152]. In many cases, real-world datasets live on graphs, namely

structural information of the data can be well represented using graphs.

As typical deep learning models are designed for learning on individual examples,

some workarounds have been introduced to exploit the inherent correlation of

the examples, which contains the structural information of the data. Most of the

workarounds focus on customizing objective functions, e.g., by adding a graph-

based regularization term (see Section 3.6). However, as indicated in [103], this

approach does not leverage efficiently the structural information, and the reported

improvements have been limited. Therefore, it is tempting to directly exploit the

31

Chapter 3. Background on Graph-based Deep Learning

structural information of data using a properly designed type of neural networks for

better performance on graph-structured data.

Graph-based deep learning (a.k.a., deep learning on graphs) refers to models

based on deep neural networks capable of handling graph-structured data. Different

from neural network models introduced in Chapter 2, graph neural networks (GNNs)

are able to leverage the correlation across individual examples by incorporating

graph structure information into their formulation. For this reason, GNNs have

been widely used in various applications involving graph-structured data such as

learning molecular fingerprints [55], traffic forecasting [38]), text classification [226],

semantic segmentation [167], and achieved noticeable performance.

In this chapter, we first introduce the notation of graphs and related basic

concepts. Subsequently, we cover two prominent trends in graph learning, including

graph kernels and graph representation learning. After that, the formulations of

popular graph neural networks are presented before we introduce some regularization

techniques that incorporate graph-based information.

3.2 Graph Representation

Graphs are mathematical structures used for modelling the pairwise relation between

objects. Well-known problems involving graphs include the Königsberg Bridge

problem1, the Travelling Salesman problem2 and the Four-Color Theorem3. Graph

theory [213] — an area of mathematics — has been developed in order to address

graph-related problems.

Graphs can be used to describe many types of data. A graph includes a set

of nodes (a.k.a., vertices) and a set of edges; each edge indicates the relation

between two nodes. There are different categories of graphs. Graphs can be directed

if the direction of edges is considered; otherwise, graphs are undirected. Graphs

are weighted if edges are given weights. Alternatively, graphs are called unweighted

(i.e., edges have the same weight of 1). In some cases, multiple edges can be

allowed between two nodes. Also, self-connected edges (a.k.a., loop) are sometimes

considered. In case loops and multiple edges are not allowed, graphs are called

simple [213]. In this PhD thesis, we restrict our attention to undirected simple

graphs as this type of graphs is usually considered in graph-based deep learning.

There are several ways to denote graphs. One may list nodes and edges. However,

the list of nodes and edges are not useful for computation on graphs. A popular

approach to represent graphs is to use matrix representation. Let G = (V,E)

denote an undirected graph, where V = {v1, v2, . . . vN} is the set of nodes and

1https://mathworld.wolfram.com/KoenigsbergBridgeProblem.html
2https://mathworld.wolfram.com/TravelingSalesmanProblem.html
3https://mathworld.wolfram.com/Four-ColorTheorem.html

32

3.2. Graph Representation

E = {e1, e2, . . . , eM} is the set of edges; each edge can be represented by a two-

element tuple, e.g., (vk, vl). A ∈ RN×N is the adjacency matrix ofG, where Aij is the

weight of the corresponding edge connecting node i and node j. AsG is an undirected

graph, the adjacency matrix A is symmetric (i.e., Aij = Aji). The incidence matrix

C ∈ RN×M is a binary matrix where an entry Cij = 1 if node vi is an endpoint of the

edge ej , otherwise, Cij = 0. The diagonal matrix D that satisfies Dii =
∑N
j=1 Aij

denotes the degree matrix of G. The unnormalized Laplacian matrix [158] of G is

given by

L = D−A. (3.1)

The graph G thus can be fully represented using either the Laplacian or the adja-

cency matrix. There exists also a normalized version of the graph Laplacian [190]:

L̃ = D−
1
2 LD−

1
2 . (3.2)

Each node of graph G is often characterized by a feature vector x ∈ RF , where

F is the feature dimensionality. Thus, all the features of the nodes in G can be

expressed in the form of a feature matrix X ∈ RN×F where each row corresponds

to a node and each column corresponds to a feature dimension.

3.2.1 Graph Exploration with Random Walk

Graph exploration refers to traversal algorithms on graphs. Random Walk is one of

the most effective methods to explore a graph (see [120]). Given a graph G = (V,E),

a length constant l, and a starting node u0 ∈ V , this method generates a “walk” of

length l, represented by a sequence of nodes {u0, u1, . . . , ul}. A node is sampled at

step k in the walk, k ∈ [1, l], following a distribution P (uk|uk−1), which is expressed

as:

P (uk = vj |uk−1 = vi) =

{
Pij , if (vi, vj) ∈ E
0, if (vi, vj) /∈ E

. (3.3)

In (3.3), Pij is the probability of transitioning from node vi to node vj . As

such, Pij is often referred to as the node transition probability. The standard way to

compute the transition probabilities is by dividing the weight of the edge (vi, vj) by

the degree of node vi (i.e., Pij =
Aij

Dii
). In general, Pij 6= Pji since the degree of node

vi is not equal to the degree of node vj . All the transition probabilities of the nodes

in G can be represented in the form of a transition matrix P ∈ RN×N , where:

P = D−1A. (3.4)

Note that
∑N
j=1 Pij = 1, ∀i ∈ [1, N].

33

Chapter 3. Background on Graph-based Deep Learning

3.3 Graph Isomorphism

Graph isomorphism is an important problem in graph theory. As in many graph-

based deep learning models, graph isomorphism has been used as a constraint, we

introduce here the definition of graph isomorphism and point out some references

to the methods for solving the graph isomorphism problem.

Considering two graphs G and H, let V (G) and V (H) denote the vertex sets of

graphs G and H, respectively. Similarly, let E(G) and E(H) represent edge sets of

G and H. A graph isomorphism from G to H is a vertex bijection f : V (G)→ V (H)

such that (vi, vj) ∈ E(G) if and only if (f(vi), f(vj)) ∈ E(H) [213]. If f is a graph

isomorphism, G and H are called isomorphic, denoted by G ' H or G ∼= H. It is

worth noting that although we are interested in undirected and simple graphs, the

aforementioned definition still holds for directed graphs and graphs with loops and

multiple edges.

Graph isomorphism is a problem of both practical and theoretical importance.

Many algorithms have been proposed to address this problem such as Weisfeiler-

Lehman [186], Canonical labeling [7] and the algorithm in [6]. However, no effi-

cient algorithms (i.e., polynomial-time algorithms) have been found and no NP-

completeness proofs have been obtained [106]. A more general problem of graph

isormophism is called subgraph isomorphism. In subgraph isomorphism, we are

interested in finding a subset of nodes and edges of graph G, which forms a subgraph

isomorphic to graph H. It is known that the subgraph isomorphism is NP-complete.

In the context of graph-based deep learning, the Weisfeiler-Lehman algo-

rithm [186], a.k.a., the Weisfeiler-Lehman test, is among the most popular algorithms

graph-based models are built on. The key idea of the Weisfeiler-Lehman test is

to find an expressive unique representation of graphs via a node labeling process,

a.k.a., node coloring. Usually, the representation is the cardinality of labels of

nodes in a graph. Two graphs are not isomorphic if their respective representations

are not identical. However, if two graphs have the same representation, they are

either isomorphic or the Weisfeiler-Lehman algorithm is not able to determine their

34

3.4. Graph Learning

isomorphism. The 1-dim Weisfeiler-Lehman algorithm is presented in Algorithm 2.

Algorithm 2: 1-dim Weisfeiler-Lehman test

input: Graphs G = (V,E), V = {vi}Ni=1; a labeling function l; number of

iterations T

output: Final node label assignment {h(T)
1 , h

(T)
2 , . . . , h

(T)
N } ∈ Σ

1 initialization: {h(0)
1 , h

(0)
2 , . . . , h

(0)
N } ← l(V) ; t← 0 ;

2 while t < T do

3 for vi ∈ V do

4 h
(t+1)
i ← hash

(
h(N(i))

(t) ∪ h(t)
i

)
;

5 end

6 t← t+ 1 ;

7 end

In Algorithm 2, h
(t)
i is the label assignment at the t-th iteration of node vi,

N(i) denotes the neighboring nodes of node i and h(N(i))
(t) indicates the label

assignment of the neighboring nodes of node vi at step t, hash(.) is a hash function

for creating new labels. In order to test the isomorphism of two graphs G and

H, the algorithm is applied on two graphs in parallel. Suppose at iteration t, the

cardinalities of a label σ ∈ Σ are different in the two graphs, we can conclude

that the two graphs are not isomorphic. Otherwise, if the two graphs have the

same label cardinalities after T iterations, extra steps are needed to determine the

isomorphism. Still, the Weisfeiler-Lehman test is an powerful heuristic for testing

the isomorphism for various classes of graphs [146]. The algorithm is terminated at

most T = max(V (G), V (H)). In addition, if the cardinalities of both graphs remain

unchanged between two consecutive iterations, the algorithm is stopped.

3.4 Graph Learning

Graph learning is a vast and diverse area with a huge number of works. In

this section, we focus on learning representations of nodes, edges, subgraphs and

entire graphs, which are also referred to as embeddings. The considered methods

generate the embeddings for general purpose, namely they are task-agnostic as

they are learned in an unsupervised manner. Alternatively, the embeddings can

be learned with tasks in mind using supervised models; we will address this aspect

in Section 3.5.

3.4.1 Graph Kernels

Graph kernels refer to a set of techniques to measure the similarity between graphs.

In this section, we cover the basic concepts for kernel methods in machine learning,

especially the graph kernels.

35

Chapter 3. Background on Graph-based Deep Learning

Let us consider a non-empty set of data points X , where each data point can be

represented by a vector x ∈ Rd, d ∈ N. Suppose that there exists a feature mapping

function φ : X → Hk, where Hk is a Hilbert space. A kernel k is a bilinear function

k : X × X → R such that [110]:

k
(
x,y

)
= 〈φ(x), φ(y)〉. (3.5)

In (3.5), 〈., .〉 denotes the inner product. A trivial example of the feature mapping

is an identity function φ
(
x
)

= x, thus the kernel is the inner product of the two

vectors x and y: k
(
x,y

)
= xTy.

In general, the kernel functions are required to be positive semi-definite. A kernel

k is said to be positive semi-definite if

N∑
i=1

N∑
j=1

cicjk
(
x(i),x(j)

)
≥ 0 (3.6)

for any datapoint x(1),x(2), . . . ,x(N) ∈ X , given that c1, c2, . . . , cN ∈ R. It is also

worth mentioning that a kernel, by definition, is symmetric, namely k
(
x,y

)
=

k
(
y,x

)
.

In kernel methods, an important concept is the Gram matrix, here denoted by K.

The Gram matrix is a squared symmetric matrix K ∈ RN×N defined for a finite set

of datapoints {x(i)}Ni=1 such that Kij = k
(
x(i),x(j)

)
. From the requirement of the

kernel function stated in (3.6), it follows that K is a positive semi-definite matrix.

Similar to kernels on the regular vector space, graph kernels are defined on a non-

empty set of graphs, i.e., k : G×G → R. The graph kernels can be expressed implicitly

or explicitly. The former approach ignores the feature mapping φ, computing directly

the kernel values. On the other hand, the latter approach computes the explicit

vector representation of each graph (a.k.a., graph embeddings), and then the kernel

values are obtained via the vector inner product. The explicit approach is faster and

more memory efficient in case the dimensionality of graph embeddings is not too

high [110].

There is a great number of graph kernels proposed over the years. Most of

these graph kernels can be considered instances of the convolution kernels [110].

The idea of the convolution kernel is straightforward: graphs are decomposed into

substructures, and the convolution kernel is evaluated on pairs of the substructures.

Let us consider two graphs G and H, where G,H ∈ G. The graph G (and H) can

be decomposed into components {g1, g2, . . . , gd} belonging to their corresponding

non-empty sets G1,G2, . . . ,Gd. Let R−1
(
G
)

denote the decomposition and keep in

mind that the decomposition may lead to multiple results, the graph convolution

36

3.4. Graph Learning

kernel can be defined as follows:

kCONV =
∑

g∈R−1
(
G
) ∑
h∈R−1

(
H
)

d∏
i=1

ki
(
gi, hi

)
. (3.7)

Designing graph kernels is an active research topic that has been extensively

investigated. In order to characterize the graph kernels, Gärtner et al. [62] introduced

the concept of complete graph kernels: a graph kernel is called complete if the feature

mapping function φ is injective. For instance, considering two non-isomorphic graphs

G andH; if φ
(
G
)

= φ
(
H
)
, then the corresponding kernel is not complete. It is known

that most of graph kernels are not complete, therefore, researchers have been relying

on the expressivity to evaluate the graph kernels. The expressivity of a graph kernel

is its capability to distinguish certain patterns and preserve several properties of

graphs [110]. The graph properties that are often considered for the expressivity

include planarity, connectedness, girth, density and clique number. Several graph

kernels including the kernels proposed by [111] and [92], are known to preserve the

aforementioned graph properties.

Graph kernels are originally designed to compute the similarity of graphs.

Therefore, the fundamental use of graph kernels is to classify graphs. These basic

usages lead to different applications of graph kernels in various areas such as

chemoinformatics (e.g., prediction of mutagenicity, toxicity and anti-cancer activ-

ity [200]), bioinformatics (e.g., enzyme classification [15], disease prediction [14]),

natural language processing (e.g., document comparison [155]) and computer vision

(e.g., human action recognition [216]). It is worth noting that most of the graph

kernels are designed based on user-defined heuristics. Although graph kernels remain

a strong approach in learning on graphs, more recent methods have developed the

ability to automatically learn from graph structure for the downstream tasks. These

methods will be discussed in Section 3.5.

3.4.2 Representation Learning on Graphs

In this section, we discuss graph representation learning methods capable of cap-

turing structural information of graphs to generate fixed low-dimensional vectors,

also known as graph embeddings. The embeddings are learned from graph data

and can represent characteristics of nodes, edges, subgraphs or entire graphs. The

embeddings can be used as input to off-the-shelf machine learning algorithms (e.g.,

support vector machine, random forest) for downstream tasks. Various methods

have been introduced for learning graph embeddings. Here, we focus on methods

that learn the graph embeddings in an unsupervised manner, namely downstream

machine learning objectives are not considered during the learning process. Methods

with task-specific learning objectives will be covered in the next section of graph

37

Chapter 3. Background on Graph-based Deep Learning

neural networks (see Section 3.5).

Node Representation Learning

In graph representation learning, node embeddings are commonly considered as

many machine learning downstream tasks involve the use of the node embeddings.

Methods in this category try to seek a function to encode nodes of a graph into low-

dimensional vector representations. Node embeddings have to maintain structural

information inherent in the graphs. In principle, if the structural information of a

graph, e.g, global position and local neighborhood of nodes, can be reconstructed

from the low-dimensional embedding vectors, these embeddings should contain

enough information for downstream tasks [73].

The node representation learning methods can be viewed more clearly via the

lens of an encoder-decoder framework [73]. Specifically, let us consider a graph G =

(V,E), the function used to embed nodes can be considered an encoder f : V → Rd

such that f
(
vi
)

= z(i), where vi ∈ V is a node and z(i) ∈ Rd is a vector. A decoder

g is a function that decodes the embeddings to obtain user-defined graph statistics.

Most of the existing decoders are pair-wise decoders, namely they map a pair of

node embeddings to a real-valued graph proximity measure g : Rd × Rd → R.

Denote by sG a user-specified graph proximity measure between nodes, then the

majority of works on learning node embeddings focus on optimizing the empirical

loss defined via the reconstructed proximity values and corresponding ground-truth

proximity values with respect to a training set D:

L
(
D
)

=
∑(

vi,vj

)
∈D

l
(
g
(
z(i), z(j)

)
, sG

(
vi, vj

))
. (3.8)

In (3.8), l : R × R → R is a loss function. Also, we use superscript letters i, j to

indicate the corresponding node embeddings of nodes vi, vj in the set of nodes V .

This is to avoid the confusion with the subscript letters, which we use to indicate

the elements in a vector or a matrix.

There have been many node embedding learning methods proposed over the

years. Using the encoder-decoder framework mentioned above, it can been seen that

the differences between these methods are in how they define the pair-wise proximity

function sG, the encoder function f , the decoder function g and the loss function

l. In general, node embedding methods can be classified into factorization-based

and random walk based approaches [73]. The basic idea of the first approach is to

factorize the proximity measure value of two nodes into vector representations of the

corresponding nodes. Representative factorization-based node embedding methods

include Laplacian eigenmaps [9], Graph Factorization [2] and HOPE [159]. Let S ∈
RN×N denote the matrix containing pair-wise proximity values and Z represent the

38

3.4. Graph Learning

node embedding matrix, then the methods following the factorization approach have

the following form of loss function:

L = ‖ZTZ− S‖22. (3.9)

The random-walk-based approach leverages an innovative idea of using random

walk statistics. Specifically, instead of using deterministic similarity measure as in

the factorization-based approach, the random-walk-based methods employ stochas-

tic measure of node similarity. One example of the stochastic similarity between

two nodes is the visiting probability of node vj from node vi on a random walk of

length T denoted by PG,T
(
vj |vi

)
(G is the graph containing both vi and vj). This

enables high level of flexibility, leading to superior performance compared to the

other approach. One of the most noticeable works belonging to the random-walk-

based approach is Node2Vec [71], where a mapping function f : V → Rd is learned

by optimizing a probabilistic loss function

max
f

∑
v∈V

log Pr(NS(v)|f(v)), (3.10)

where Pr(NS(v)|f(v)) is the probability of observing the neighborhood NS(v)

of node v given the embedding f(v). The learned node embeddings allow the

reconstruction of local connectivity pattern of the underlying graph, which extactly

follows the encoder-decoder framework mentioned earlier. In practice, the authors

of Node2Vec do not directly optimize (3.10). Instead, they extend the Skip-Gram

model [140] to handle paths extracted by a biased random walk. Using this strategy,

Node2Vec is able to learn meaningful node embeddings, which have lead to state-of-

the-art results in various tasks [49, 152]. In addition to Node2Vec, numerous works

have been released following the random walk approach including DeepWalk [162],

HARP [27], Walklets [163], and the work of Chamberlain et al. [23], and improved

performance has been reported.

One of the major problems of node embedding methods mentioned earlier is

the generalization to unseen nodes, a.k.a., the transductive problem. Specifically,

methods mentioned above are often incapable of generating the embeddings for

nodes not seen during training time. Therefore, the use of these methods is limitted

for evolving graphs. Another issue is that other useful features of graphs such as

node labels or edge features are often ignored. Recently, several methods have been

devised in order to address these issues. These methods follow the idea of feature

aggregation: features of neighboring nodes are aggregated and transformed to obtain

the representations of considered nodes. Important works following this approach

include the TGAT [222] and GraphSAGE [72] models. The details of GraphSAGE

are shown in Algorithm 3, where K is number of iterations, N(v) denotes the set of

neighboring nodes of node v. The aggregation function in the Algorithm 3 could be

39

Chapter 3. Background on Graph-based Deep Learning

simple averaging over node features z
(k−1)
u , but a more complex function such as a

LSTM could be used [72]. It should be noticed that Algorithm 3 looks similar to

the 1-dim Weisfeiler-Lehman test (Algorithm 2). In fact, Algorithm 3 could be seen

as an extension of Algorithm 2 into multiple dimensions with parametrization.

Algorithm 3: GraphSAGE node representation learning.

input: Graphs G = (V,E); node features {xv,∀v ∈ V }; depth K;

parameters W (k), 1 ≤ k ≤ K
output: Node embeddings {zv,∀v ∈ V }

1 initialization: z
(0
v ← xv,∀v ∈ V ;

2 for k = 1 . . .K do

3 for v ∈ V do

4 z
(k)
N(v)
← Aggregation

(
{z(k−1)
u ,∀u ∈ N(v)}

)
;

5 z
(k)
v ← σ

(
W(k) × Concatenation

(
z

(k−1)
v , z

(k)
N(v)

))
6 end

7 z
(k)
v ← z(k)

v

‖z(k)
v ‖2

,∀v ∈ V

8 end

9 zv ← z
(K)
v ,∀v ∈ V

Edge Representation Learning

Edge representation learning is part of graph representation learning. Edge represen-

tation learning refers to mapping edges of a graph to a low-dimensional vector space.

In the literature, most of graph representation learning works focus on learning node

representations. This is because the number of edges is often much larger than the

number of nodes in a graph, leading to prohibited computational cost [208].

The edge2vec proposed by Wang et al. [208] is one of the most well-known works

on edge embeddings. This work specially considers social graphs as this type of

graphs is often sparse, namely the average node degree is bounded. This helps

bring down the computational cost in learning edge representations. Edge2vec uses

a well-designed deep neural network combining an autoencoder and the Skip-Gram

model [140] to learn directly edge representations. The learned embeddings are

capable to preserve local and global structure information from the original graph

and can be used for various downstream tasks including link prediction, social tie

direction prediction and social tie sign prediction.

Other works for edge representation learning are indirect methods, namely they

obtain edge embeddings via node embeddings. In [1], a deep neural network model

is employed to first learn node embeddings. These embeddings are then linearly

projected and combined to create edge representations. In [71], node embeddings

are learned in advance using the Skip-Gram model and edge embeddings are the

40

3.4. Graph Learning

results of the Hadamard product4. It is claimed that indirectly generating edge

embeddings from the embeddings of corresponding end nodes cannot preserve the

complete properties of the edges [208]. Thus, this leads to suboptimal performance

in tasks involving edges such as link prediction.

On the other hand, there exist works which consider learning edge representa-

tions as an intermediate step for learning node embeddings. In [61], an edge-type

transition matrix is established considering the frequency of relationship types. The

matrix is leveraged to generate walks, which are later used in the Skip-Gram model

for learning node embeddings. Similarly, Li et al. [122] also use edge representations

to modify the random walk process, and then the Skip-Gram model is used for

learning node embeddings. The difference of this method and the previous one,

however, lies in the edge representation learning step: the edge embeddings are

generated by optimizing an objective function considering clusters of nodes in the

corresponding graph.

Subgraph and Entire Graph Representation Learning

Different from node and edge representation learning, there are works focusing

on learning the embeddings for subgraphs or entire graphs. Considering a graph

G = (V,E) ∈ G, the goal of these works is to learn a function f : G → Rd

such that the structural information of the graph G is preserved. Essentially,

the learned graph embeddings can be used for graph classification. This leads

to various domain-specific applications such as fake news detection [145], protein

function prediction [15], chemical compound retrieval and classification [207], image

classification [76] and video abnormal activity recognition [191].

Leveraging graph kernels has been one of the most prominent approaches in

learning graph embeddings. As mentioned before, graphs kernels are capable of

calculating the similarity (or distance) of two graphs. Therefore, a given set of

graphs can be represented by a matrix M ∈ RN×N , where Mi,j is the similarity

between graphs Gi and Gj , and N is the cardinality of the set of graphs. This

matrix can be used by off-the-shelf machine learning models. However, the graph

kernel methods are not scalable for big datasets. In addition, these methods have

difficulty to generalize to graphs that are unseen during kernel learning step.

One simple approach for embedding (sub)graphs is to aggregate node embed-

dings. This approach has been adopted in the works of Duvenaud et al [55] and

Dai et al. by simply summing all node embeddings of a graph. However, given the

complex structure of graphs, simple aggregation of node embeddings is not able to

retain the rich structural information of the graphs.

Recently, an unsupervised method for learning subgraph has been proposed

by Narayanan et al. [148]. In this method, subgraphs (a.k.a., substructures) are

4https://mathworld.wolfram.com/HadamardProduct.html

41

Chapter 3. Background on Graph-based Deep Learning

extracted from a set of graphs making a subgraph vocabulary. For each subgraph

in the vocabulary rooted at a node v, its radical context containing a number of

subgraphs rooted in the neighborhood of v is found using the Weisfeiler-Lehman

(WL) relabeling process [186]. The method leverages the Skip-Gram model to learn

subgraph embeddings in a similar way to word2vec embeddings [140]. Although

subgraph embeddings are learned directly, the method still needs a graph kernel

— such as Deep Graph Kernel [223] — to generate graph embeddings. A more

recent work proposed by the same author [149] directly learns the embeddings of

entire graphs. Similar to the previous method, the work in [149] relies on subgraphs

extracted via the WL relabeling process. However, it employs the doc2vec model and

learns graph embeddings in the same manner with learning document embeddings.

Both methods have shown competitive performance in standard tasks such as graph

classification and domain-specific tasks including malware detection against the

state of the art.

3.5 Graph Neural Networks

Euclidean data with regular structure such as speech, images and videos has been

effectively handled using deep learning models, e.g., CNNs and LSTMs. However,

many real-world applications generate non-Euclidean data having irregular structure

such as graphs and manifolds. For example, social media data created by users on

social media platforms can be represented by a large graph where each node is a user

and the node’s feature is the properties of the user. IoT data collected from a sensor

network can be considered graph signals on a graph where nodes are sensors and

measurements of nodes are the signals. The complexity of graph structure imposes

new challenges for popular deep learning models.

In previous sections, we have discussed approaches for dealing with graph-

structured data including graph kernels and graph representation learning. Graph

kernels are a classical approach mainly used for graph classification. The limitation of

graph kernels is high computational cost, thus graph kernels are not scalable for large

datasets. The graph representation learning approach learns graph embeddings in an

unsupervised fashion, thus the learned embeddings are general and not optimal for

specific tasks. Furthermore, additional machine learning algorithms such as support

vector machine or logistic regression are needed to make prediction, leading to non-

end-to-end solutions.

Recent years have witnessed increasing interest in graph neural networks (GNNs)

— a special type of neural networks with the ability to effectively learn on graphs in

an end-to-end manner. Specifically, GNNs take as input graphs with their features,

learn expressive graph embeddings and make prediction based on the embeddings.

GNNs do not use graph kernels, thus they are more scalable to large datasets. GNNs

42

3.5. Graph Neural Networks

have been successfully used for various tasks in bioinformatics, computer vision,

natural language processing, traffic forecasting, recommender systems, to name a

few [218].

Various GNN models have been proposed by researchers. Hence, it is important

to categorize the GNNs in order to understand their strength and weakness. Several

surveys have categorized the GNNs using different criteria. Following [235, 218],

we consider the GNNs from propagation rule perspective, and we will discuss three

noticeable types of GNNs including graph recurrent neural networks (GRNNs), graph

convolutional neural networks (GCNNs) and graph attention networks (GATs).

After that, we show that many GNN models share the common principle of message

passing neural networks (MPNNs), a general framework for learning on graphs.

Finally, several graph-based regularization techniques are presented.

3.5.1 Graph Recurrent Neural Networks

Graph Recurrent Neural Networks (GRNNs) learn node embeddings using recurrent

neural architectures. Nodes in GRNN models exchange information until an equi-

librium state is established [218]. Most of the GRNNs are pioneer works on graph

neural networks. One of the most prominent works in GRNNs is from Scarselli et

al [183], in which node embeddings are learned via the following updating rule:

h(t)
v =

∑
u∈N(v)

f
(
xv,x

e
(v,u),xu,h

(t−1)
u

)
, (3.11)

where xv denotes feature vector of node v, xe(v,u) denotes feature vector of edge (v, u)

and h
(t)
v indicates vector representation of node v at iteration step t. Function f(.)

is a recurrent function, which is implemented using a recurrent neural network. A

more recent work by Li et al. [124] employs GRUs as the recurrent function, ignoring

edge features and node features in the updating rule:

h(t)
v = GRU

(
h(t−1)
v ,

∑
u∈N (v)

Wh(t−1)
u

)
. (3.12)

As the recurrent function could be computationally expensive, effort has been

spent on reducing the computational cost, especially for large graphs. In [40],

separate sets of nodes are sampled for state update and gradient computation.

Similar to other GRNN methods, the representation of a node is learned iteratively:

h(t)
v = (1− α)h(t−1)

v + αW1σ

W2

xv,
∑

u∈N(v)

[
h(t−1)
u ,xu

] , (3.13)

43

Chapter 3. Background on Graph-based Deep Learning

where [,] denotes concatenation, α is a hyperparameter and σ indicates a non-linear

function.

3.5.2 Graph Convolutional Neural Networks

Graph convolutional neural networks (GCNNs) are the most popular type of GNNs.

GCNNs arise from the classical convolutional neural networks (CNNs), where

local features are learned from grid-like data. As the locality concept on graph

is significantly different from grid-like data, many attempts have tried to extend the

classical convolution for graphs. There exist two common approaches for GCNNs,

namely spectral and spatial. The spectral approach defines convolution from a

signal processing viewpoint, namely the convolution operation is to remove noise

from graph signals. Therefore, the convolution operation is derived from the graph

Fourier transform in this approach. On the other hand, the spatial approach designs

convolutions from information propagation perspective. As the latter approach is

simpler, efficient and able to scale to large datasets, the spatial approach has become

more popular than the former.

Spectral Methods

Graph Fourier Transform

Considering an undirected graph G = (V,E), |V | = N with adjacency matrix

A ∈ RN×N , degree matrix D ∈ RN×N (Dii =
∑
j Aij). The normalized Laplacian

matrix, L̃ = D−
1
2 LD−

1
2 is a real symmetric positive semi-definite. Therefore, the

matrix L̃ can be factorized into three matrices as

L̃ = UΛUT , (3.14)

where Λ is a diagonal matrix, containing eigenvalues of L̃ on its diagonal line. The

matrix U is formed by eigenvectors of L̃ as columns, ordered by the corresponding

eigenvalues in Λ. The eigenvectors form an orthogonal space, namely UUT = IN .

Denote by x ∈ RN a signal on graph G where an entry xi represents a value on node

i. The projection of the graph signal x on the aforementioned orthogonal space is

called graph Fourier transform:

F(x) = UTx. (3.15)

The inverse graph Fourier transform is defined by

F−1(F(x)) = UUTx = x. (3.16)

Convolution: Given a graph signal x ∈ RN and a filter g ∈ RN , the convolution of

44

3.5. Graph Neural Networks

x and g is defined by

x ∗G g = F−1 (F (x)�F (g)) = U
(
UTx�UTg

)
, (3.17)

where � denotes Hadamard product (a.k.a., element-wise product). Let gθ =

diag(UTg) a diagonal matrix, then equation (3.17) can be written as

x ∗ gθ = UgθU
Tx. (3.18)

The filter gθ can be parametric or nonparametric. By introducing different ways

to choose gθ, different graph convolution rules can be formed, which are the most

important blocks for various graph convolutional neural networks.

An important architecture that uses the convolution operation defined in (3.18)

is the spectral CNN introduced in [17], where the filter gθ = Φk
i,j ∈ RN×N is

a diagonal parameter matrix. Similar to classical CNNs, multiple filters are used

in the spectral CNN. Denote by H(k−1) ∈ RN×fk−1 the input for the k-th graph

convolutional layer, the propagation rule of the graph convolutional layer is given

by

H
(k)
:,j = σ

fk−1∑
i=1

UΦ
(k)
i,j UTH

(k−1)
:,i

 , (3.19)

where H
(k−1)
:,i indicates a graph signal on channel i-th of the input H(k−1), fk−1

is number of channels of the input, and σ denotes a non-linear function. It can be

seen that the spectral CNN model has several limitations. Firstly, the parameters

are domain specific, i.e., the size of parameter matrices Φ
(k)
i,j depend on number of

nodes of the underlying graph. Therefore, it is not straightforward to re-use a trained

model for other graph-structured datasets with different graph size. Furthermore,

computing eigenvectors (i.e., matrix U) is very expensive for large graphs, which

limits the scalability of the spectral CNN model.

A number of efforts have been spent on reducing the computational cost in

factorizing the Laplacian matrix. Hammond et al. [74] proposed gθ as a function of

eigenvalues, i.e., gθ(Λ), which is approximated using Chebyshev polynomials Tk(x)

such that

gθ(Λ) ≈
K∑
k=0

θkTk(Λ̃), (3.20)

where Λ̃ = 2
λmax

L − IN , λmax is the largest eigenvalue, and θ is the vector of

45

Chapter 3. Background on Graph-based Deep Learning

coefficients. The Chebyshev polynomials are defined recursively:

T0(x) = 1,

T1(x) = x,

Tk(x) = 2xTk−1(x)− Tk−2(x).

Note that though the Chebyshev polynomials are defined for scalar numbers,

however, it can be extended easily for matrices by replacing 1 with the identity

matrix IN . The equation (3.18) now becomes

x ∗ gθ ≈
K∑
k=0

UθkTk(Λ̃)UTx =

K∑
k=0

θkTk(L̃)x, (3.21)

where L̃ = 2
λmax

L− IN = UΛ̃UT [103]. The equation (3.21) implies

Tk(L̃) = UTk(Λ̃)UT , (3.22)

which can be proven using induction. With k = 0, 1, it is easy to see (3.22) is true.

Suppose (3.22) is true with k ∈ N, we need to prove that the equation is true with

k + 1. Using the definition of the Chebyshev polynomials, we have:

Tk+1(L̃) = 2L̃Tk(L̃)− Tk−1(L̃) (3.23)

= 2L̃UTk(Λ̃)UT −UTk−1(Λ̃)UT (3.24)

= 2UΛ̃UTUTk(Λ̃)UT −UTk−1(Λ̃)UT (3.25)

= 2UΛ̃Tk(Λ̃)TT −UTk−1(Λ̃)UT (3.26)

= U
(
Λ̃Tk(Λ̃)− Tk−1(Λ̃)

)
UT (3.27)

= UTk+1(Λ̃)UT . (3.28)

The formulation in (3.21) is called K-localized convolution as it uses K-th order

polynomials of the Laplaciman matrix, which relates to K steps away from central

nodes. Later, Defferrard et al employs this formulation to create the Chebyshev

spectral CNN (a.k.a., ChebNet) [42]. Compared to the spectral CNN [17], the

ChebNet is much less computational expensive as there is no need to compute the

decomposition. Moreover, the parameter θ is not constrained by the graph size, and

the number of parameter is significantly reduced.

Recently, Kipf et al. [103] introduced a graph convolutional network (a.k.a.,

GCN) based on simplification of ChevNet. Specifically, GCN only considers the first

order of Chebyshev polynomials, i.e., K = 1. Additionally, the authors introduce

a renormalization trick to alleviate the problem of numerical instabilities and

46

3.5. Graph Neural Networks

(a) Classical 2D convolution operation commonly used in CNNs (b) Graph convolution

Figure 3.1: The analogy between classical 2D convolution operation (a) and graph convolution
operation used in spatial-based graph convolutional neural networks. In the classical 2D convolu-
tion, a filter is used to convolve a central pixel (the yellow point) with its neighbours to obtain
new value for the central pixel. Similarly, graph convolution takes features of a central node and
its neighborhood to compute new representation for the central node, e.g., by averaging over the
features of these nodes. The difference between graph convolution and the classical convolution
is that the neighborhoods (a.k.a., receptive fields) vary in size and nodes in a neighborhood are
unordered.

exploding/vanishing gradients. Eventually, a simple propagation rule is derived,

which is implemented in a convolutional layer:

H(k) = σ
(
D̃−

1
2 ÃD̃−

1
2 H(k−1)W(k)

)
, (3.29)

where Ã = A + IN is the adjacency matrix with self-loops added, D̃ ∈ RN×N is the

degree matrix where D̃ii =
∑n
j=1 Ãij , H(k−1) and H(k) are the input and output

of the k-th convolutional layer (H(0) = X) and W(k) is the parameter of the layer.

GCN has been successfully used in various tasks including semi-supervised node

classification and graph classification. For node classification, a softmax classifier is

used, taking as input the latent node representation H(k). For graph classification,

a pooling operation such as mean-pooling is needed to obtain the embedding for

the entire graph. Likewise, the graph embedding is then classified using a softmax

classifier [145].

Spatial Methods

Spatial methods define graph convolution based on the spatial relations of nodes on

a graph, which is analogous to the convolution operation used in CNNs. Specifically,

the spatial graph convolution is applied on a central node and its neighboring nodes

by aggregating their features into a vector. A non-linear function is then used to

transform the vector to obtain the representation of the central node. Similar to

classical convolution, the spatial graph convolution operates on groups of spatially

close neighbors to obtain expressive representations for nodes. The major challenges

of spatial-based methods are defining the convolution operation such that it can

47

Chapter 3. Background on Graph-based Deep Learning

handle different sized neighborhoods while preserving the local invariance, which is

an important property of classical CNNs. Figure 3.1 shows the analogy between the

conventional convolution and spatial-based graph convolution.

An interesting spatial-based GCNN is Patchy-San, which follows strictly the

classical convolution [154]. Specifically, the method uses a graph labeling procedure

to define the order of nodes. A sequence of nodes is formed using the node order. For

each node in the sequence, a neighborhood of fixed size k is found, which servers as

a receptive field for the classical convolution operation. In short, the contribution of

Patchy-San is to ingeniously extract locally connected regions for arbitrary graphs

while no modifications have been done for the convolution operation.

Atwood et al. [5] introduced diffusion convolutional neural networks (DCNN)

for node classification and graph classification. The DCNN makes use the power

series of node transition probability matrix Pk, k = {1 . . .K}, where P = D−1A.

The power series of P can be arranged in a 3D tensor P? ∈ RN×K×N , where N

is number of nodes in the considered graph, K is number of elements in the series.

Denote by X ∈ RN×F the input feature matrix; each row in X is the feature vector

of a node. The convolution operation of DCNN can be expressed as

H = σ (Wc �P?X) , (3.30)

where Wc ∈ RH×F is the matrix containing parameters, H ∈ RN×K×F is the output

of the diffusion-based convolution operation, containing latent node representations.

It is worth noting that in DCNN, the node representations are calculated directly

from the input feature X instead of depending on previous hidden representation

matrix (e.g., H(k−1)) as in other methods.

GraphSAGE [72] is a spatial-based method for learning on graphs, introduced in

Section 3.4.2. GraphSAGE learns node embeddings by aggregating and transforming

features of nodes in a local neighborhood. Therefore, GraphSAGE can be considered

as a spatial graph convolutional neural network, and its propagation rule can be

implemented with graph convolutional layers (see Algorithm 3). The distinction

between GraphSAGE and other GCNNs is that it is task-agnostic, making it a

general method usable for various applications.

The GCN model introduced in the previous section (i.e., spectral methods) is

derived from graph spectral analysis. However, the GCN can be seen as a spatial

method in the sense that its convolution operation aggregates and transforms

features of nodes in local neighborhoods. In particular, let us re-write equation (3.29)

in a shortened form:

H(k) = σ
(
D̃−

1
2 ÃD̃−

1
2 H(k−1)W(k)

)
= σ

(
ÂH(k−1)Wk

)
. (3.31)

The operations in (3.31) can be seen in two steps. The first step, specified by

48

3.5. Graph Neural Networks

the matrix multiplication M = ÂH(k−1), computes linear aggregation of features

of first-order neighboring nodes. The second step is to compute new features by

multiplying the aggregated features with a weight matrix; the result is activated

using a non-linear function. We are interested in the first step as it follows the

spatial approach. Specifically, the i-th row in the matrix M, which corresponds to

the i-th node, is computed by

Mi,: =

N∑
j=1

(
ÂijH

(k−1)
j,:

)
, (3.32)

where Mi,: and H
(k−1)
i,: indicate respective rows in M and H. Clearly, only features

of nodes connected to the i-th node are taken into account. Therefore, the GCN

model is said to bridge the gap between spatial and spectral methods for graph

convolutional neural networks.

Recently, several works have tried to generalize spatial-based GCNNs for non-

Euclidean data including graphs and manifolds. One noticeable work in this regard

is the Mixture Model Network (MoNet) [144], where the authors introduce node

pseudo-coordinates imposed between a node and its neighbors. On these coordinates,

they define a weighting function (a.k.a., kernel), which is used to obtain a generalized

graph convolution operation. The authors have shown that GCN, DCNN and several

other GCNN models are instances of MoNet.

3.5.3 Graph Attention Networks

Attention has been widely used in deep learning for various tasks in computer vision

and natural language processing (see Section 2.3.4). The attention mechanism can

be used with CNNs, RNNs or to create individual models. Many models, which are

solely based on attention, have achieved significant results, e.g., Transformer [203]

and BERT [45] for machine translation and language modeling. The advantage of

the attention mechanism is that it can handle variable sized sequences, on which the

most important parts are focused to make prediction decisions. As graph datasets

may contain graphs with different sizes, it is tempting to use attention mechanism

to handle the variable sized graphs. Similar to spatial-based methods, parameters in

attention networks are not domain-specific, the generalizability of attention-based

GNN models to unseen graphs during training, therefore, can be improved.

Graph attention networks (GAT) apply the attention mechanism in the context

of graph neural networks [204]. The GAT is composed of several graph attention

layers. A graph attention layer transforms feature vectors of nodes into more

expressive representations, considering the connection between nodes. Denote by

hi ∈ RF the feature vector of node i and h′i ∈ RF ′ the output of the attention

layer for the same node. Similar to the GCN model mentioned earlier, the feature

49

Chapter 3. Background on Graph-based Deep Learning

vectors of the input and output of the attention layer can be summarized with the

matrices H ∈ RN×F and H′ ∈ RN×F ′ . The attention layer first computes attention

coefficients using a single-layer feed-forward neural network:

αij =
exp

(
LeakyReLU

(
θT [Whi‖Whj]

))∑
k∈N(i)

exp (LeakyReLU (θT [Whi‖Whk]))
, (3.33)

where W ∈ RF ′×F and θ ∈ R2F ′ are the parameters of the layer, N(i) denotes the

local neighborhood of node i-th and ‖ indicates concatenation. The coefficient αij
indicates the importance of node j to node i. Note that αij is only calculated if there

is a connection between the respective nodes. Otherwise, the coefficient is equal to

zero. The attention coefficients are then used for computing the output:

h′i = σ

 ∑
j∈N(i)

αijWhj

 . (3.34)

Putting together all the attention coefficients in a matrix A, the output can be

calculated using matrix multiplication:

H′ = σ (AHW) , (3.35)

which is similar to the propagation rule in GCN [103]. An extended version of GAT

using multi-head attention is also proposed in [204], which is useful in stabilizing the

learning process. Specifically, K attention heads are considered, and the outputs of

the attention heads are concatenated:

h′i = ‖Kk=1σ

 ∑
j∈N(i)

αkijW
khj

 . (3.36)

Gated attention networks (GaAN) [231] employ a similar approach to GAT,

leveraging the multi-head attention mechanism. In addition, GaAN introduces

additional attention scores for the attention heads, thus the contributions of the

heads are unequal, which is different from the GAT.

3.5.4 Message Passing

In previous sections, we have seen different variants of graph neural networks

(GNNs) proposed over the years, including GRNNs, GCNNs and GATs. However,

many works from the these categories can be viewed as instances of a general

framework named message passing neural networks (MPNNs) [64]. The key idea

behind the MPNNs is similar to the spatial approach in GCNNs, namely messages

50

3.5. Graph Neural Networks

are exchanged between nodes to obtain expressive representations of nodes; a

message could be feature vector of a node or an edge.

For brevity, let us consider an undirected graph G = (V,E), |V | = N , bearing

min mind that the extension of directed graphs is trivial. Denote by xi the feature of

node vi ∈ V and eij the feature of edge (vi, vj). The message passing is a recursive

procedure including T steps; each step involves a message function f (t), a node

update function g(t), latent node embeddings h
(t)
i , and messages m

(t+1)
i such that

m
(t+1)
i =

∑
j∈N(i)

f (t)
(
h

(t)
i ,h

(t)
j , eij

)
, (3.37)

where N(i) indicates the neighborhood of node vi. A new representation of node vi
is then updated by

h
(t+1)
i = g(t)

(
h

(t)
i ,m

(t+1)
i

)
. (3.38)

Having computed node embeddings after T iterations, depending on downstream

tasks, additional steps can be used. For instance, for the node classification task, a

softmax classifier can be used to output class probabilities. In case of entire graph

classification, a Readout phase is employed to compute the entire graph embedding

z = fR
(
{hTi |vi ∈ V }

)
, (3.39)

where fR is a readout function. It should be noted that f (t), g(t) and fR are all

learnable functions. In what follows, we show that some GNN models mentioned

earlier are specific instances of the MPNNs.

The gated graph neural networks (GG-NN) [124] [see (3.12)] learns the adjacency

matrix W, which is then used for node feature aggregation. The message function is

f (t)(h
(t)
i ,h

(t)
j , eij) = Wh

(t)
j . The update function is the gated recurrent unit (GRU):

g(t) = GRU(h
(t)
i ,m

(t+1)
i). The same message and update functions are used for each

iteration t. The readout function is given by

fR =
∑
i∈V

σ
(
α
(
h

(t)
i ,h

(0)
i

))
�
(
β
(
h

(T)
i

))
, (3.40)

where α and β denote simple feed-forward neural networks.

The GNN models proposed by Bruna et al. [17] and Defferrard et al. [42] can also

be considered instances of MPNNs. In particular, the convolution operations defined

in their works realize the message passing mechanism with the message function

f (t)(h
(t)
i ,h

(t)
j) = C

(t)
ij h

(t)
j ; the matrix C

(t)
ij is computed using the eigenvectors of the

Laplacian matrix and the parameters of the respective models. The update function

has the form g(t)(h
(t)
i ,m

(t+1)
i) = σ(m

(t+1)
i).

The MPNN framework is also realized by the popular GCN model [103],

51

Chapter 3. Background on Graph-based Deep Learning

where the message function is defined by f (t)(h
(t)
i ,h

(t)
j) = c

(t)
ij h

(t)
j , where c

(t)
ij is

the normalized weight of the edge (vi, vj), e.g., c
(t)
ij = 1√

deg(vi)deg(vj)
Aij . It is

worth mentioning that c
(t)
ij is a constant depending only on the structure of the

underlying graph. The update function is a linear projection activated by ReLU:

g(t)(h
(t)
i ,m

(t+1)
i) = ReLU(W(t)m

(t+1)
i).

3.6 Graph-based Regularization

Structural information contained in the underlying graph has been widely used

in improving algorithms in signal processing and machine learning. The motivation

behind graph regularization arises from the fact that nodes in the same neighborhood

often share common features — a.k.a., the smoothness of graph-structured data. As

a result, graph regularization methods have been focusing on imposing a certain

level of smoothness on attributes of nodes (i.e., features or labels).

Denote by x ∈ RN a graph signal living on graph G = (V,E), |V | = N . x(i)

indicates value of the signal at node vi. Denote by L = D − A the unnormalized

Laplacian matrix (see Section 3.2). The quadratic form of graph G is defined as

S2(x) =
∑

(vi,vj)∈E

Aij [x(i) − x(j)]
2 = xTLx. (3.41)

In many signal processing problem, the quadratic form S2(x) is added to objective

function. For instance, in graph signal denoising where x = y + η, the following

optimization problem is considered [190]:

arg min
x
{‖x− y‖22 + γxTLx}. (3.42)

The same reasoning is also applied in regularizing neural networks. Denote by

H the learned representation, which is output of a layer in a neural network; rows

of H are node embeddings. The regularization term has the following form:

Ω(H) =
1

2

∑
(vi,vj)inE

‖hi − hj‖22Aij = tr(HTLH). (3.43)

The regularization term in (3.43) is called graph Laplacian regularizer. Similar to

graph signal denoising, the regularization term Ω(H) is added to original objective

function L. The final objective term, i.e., L̃ will be minized during training, which

eventually imposes the smoothness on output representations:

L̃ = Loriginal + γΩ(H). (3.44)

52

3.7. Conclusion

The graph Laplacian regularizer can be used for any intermediate layer in a deep

neural networks. In case layer-wise pre-training is needed, the regularizer has to be

done for every layer. This regularization technique has been widely integrated to

many models, especially deep autoencoders [18, 90].

A more recent work in graph-based regularization has tried to reconstruct graph

structure of the data [224]. Instead of adding the graph quadratic term to the original

loss, the authors calculate the difference between the reconstructed adjcency matrix

and the original adjacency matrix and add this term to the original loss:

L̃ = Loriginal + γ∆(A, Ã). (3.45)

It has been claimed by the authors that the regularization in (3.45) is more

general than the Laplacian regularizer in terms of flexibly enforcing local geometric

structure.

3.7 Conclusion

In this chapter, we went through fundamental concepts and important properties

of graphs. More importantly, we systematically covered major topics related to

learning on graphs including graph kernels and graph representation learning. These

topics are closely related to our contributions, which are presented in Chapters 4, 5

and 6. While graph kernels are an established topic with a huge number of works,

the limitation in scalability does not allow the use of these methods on large

datasets. Graph representation learning is a more recent approach, which learns

embeddings of nodes, edges, subgraphs or entire graphs. Usually, graph represen-

tation learning methods leverage unsupervised learning, thus additional machine

learning algorithms are needed for downstream tasks. Apart from that, graph

neural networks follow an end-to-end approach, which learns graph embeddings in

a supervised fashion. Graph neural networks have gained traction with many works

proposed recently, including graph recurrent neural networks, graph convolutional

neural networks, graph attention networks and others. Besides, we discussed graph

neural networks from message passing perspective — the general framework that

instantiates many existing graph neural networks. Last but not least, we briefly

covered graph-based regularization techniques. It is worth pointing out that the

message passing mechanism and regularization are strongly related to our work

summarized in Chapter 6. We believe that systematically discussing the background

of graph-based deep learning is useful and will allow good understanding of our works

presented in subsequent chapters.

53

54

Chapter 4

Graph-based Deep Learning for

Social Media Data Analytics

4.1 Introduction

Social media refers to platforms that allow users to share content and interact

with others in an online environment. Examples of popular social media platforms

include Twitter, Facebook, Reddit, and LinkedIn. Data on social media is mostly

user-generated, which may include different types such as text, images, videos and

user interactions (e.g., liking and following). As introduced in Chapter 1, social

media platforms are one major source of big data as they usually have hundreds of

millions of users. Since a huge amount of data is constantly generated, it is tempting

to leverage it to generate value.

Patterns hidden in social media data might be very beneficial for a wide range

of applications. For example, the sentiment of online users toward products can

reflect the quality of the products. Companies, therefore, may want to monitor

reactions of the public on their products via sentiment analysis in order to make some

adjustments if necessary [174]. Twitter posts (a.k.a., tweets) may reveal important

events starting to happen in real world such as epidemic [89], natural disasters [193]

or social unrest [109]. These examples show that social media data is valuable, and

effectively analyzing this data may result in impactful applications.

In Chapter 3, we have discussed graphs, a data structure that can be used to

represent various types of data including text, images, videos, IoT data, and social

media data, to name a few. The social media data, which involves a huge network of

online users, inherently has a graph structure. For instance, we can see social media

users as nodes of a big graph where the connections (a.k.a., edges) between the users

might be their online friendship relation. Other entities such as news articles shared

The material in this chapter is based on the author’s publications [49, 50, 44].

55

Chapter 4. Graph-based Deep Learning for Social Media Data Analytics

by the users on social media platforms can be viewed as single graphs where the

nodes of a graph correspond to posts made by the users. Given the inherent graph

structure of social media data, it is tempting to effectively exploit the rich structural

information for analytics. Deep learning on graphs has become relatively mature in

recent years. We have already seen in Chapter 3 a huge number of works in graph

kernels and graph representation learning, especially graph neural networks (GNNs).

Research on GNNs has become a popular trend with advanced models published

every month, and the applications of GNNs are continuously increasing. Given the

success of deep learning on graphs, it seems reasonable to adopt graph-based deep

learning methods for analyzing social media data.

In this chapter, we focus on two applications of social media data analytics.

Firstly, we create a novel method for predicting home locations of social media

users (i.e., Twitter users) [50, 49]; this application aligns with our first objective of

improving quality of big data (see Chapter 1, Section 1.5.1). The user home location

is an important piece of information, which plays a key role in applications such as

event detection or social marketing. Our method follows the multivew deep learning

principle, combining knowledge from different sources. Moreover, we create large

graphs of Twitter users from the users’ interaction data, which are then leveraged

to generate user representations for using in the proposed multiview deep learning

model. Secondly, we propose a method for detecting fake news on social media

based on a graph convolutional neural network [44]. Fake news on social media

platforms is a serious problem, which potentially causes disastrous consequences

for citizens, organizations and the society. Detecting fake news effectively will help

prevent it from circulating on the Internet; this application links directly to our

second objective of gaining insights from big data (see Chapter 1, Section 1.5.2). In

order to detect fake news, we have proposed a method that is able to capture the

correlation across news articles shared on social networks to compute the articles’

credibility level.

The rest of this chapter is organized as follows. In Section 4.2, we present our

contribution in Twitter user location prediction. Our contribution in fake news

detection follows in Section 4.3. Finally, we draw conclusions on our contributions

and plan future work for social media analytics tasks.

4.2 Twitter User Geolocation with Multiview Deep

Learning

In this section, we focus on predicting the location of Twitter users. Twitter is one

of the most popular social networks with more than 300 million users as reported

during 4th quarter of 2017 [196]. On the profile of a Twitter user, the location

information of the user can be specified with the name of a place like a university, a

56

4.2. Twitter User Geolocation with Multiview Deep Learning

city, or by using exact GPS1 coordinates. The user location can also be embedded in

tweets. Such information is very useful in various applications such as social unrest

detection and online marketing. However, as reported in [22], only 3% of tweets,

approximately, are geo-tagged and the location information in the user profile is

typically missing or ambiguous [31, 80], namely unreal locations might be used.

Furthermore, Twitter users are becoming less interested in sharing their location

despite the popularity of GPS-enabled smartphones according to [119]. It is worth

noting that for the service provider (i.e., Twitter), obtaining user location is easy by

means of the IP address. However, for third parties, the IP address information is not

available. Therefore, predicting the location of Twitter users has become interesting

for both industry and research communities.

The Twitter geolocation problem using machine learning can be addressed at

two different levels, namely, the tweet level [54, 114] or the user level [95, 234].

The former aims at predicting the location of single tweets, which is a difficult

task due to the limited availability of information. In this thesis, we focus on the

latter, namely estimating the most common location of Twitter users (i.e., home

location), a problem typically referred to as Twitter user geolocation. There are

different granularity levels for the problem [234]: (i) administrative region, i.e.,

countries, states, or cities where users reside; (ii) geographical region, i.e., the earth

is partitioned into cells and the cell where a user resides is estimated; (iii) exact

geocoordinates in terms of longitude and latitude. The user geolocation problem is

typically addressed as a classification problem. Once the geographical region of a

user is predicted, the user’s exact geocoordinates are estimated using the center of

the region.

Twitter user geolocation approaches are categorized as follows. Firstly, content-

based methods extract information from the textual content of tweets to predict the

user’s location [82, 56, 166, 24, 22, 127]. Secondly, network-based methods rely on the

assumption that connected users are more likely to reside in nearby geographical

locations [8, 94, 37]. A third category includes methods that combine both the

textual content of tweets and the network of users [170, 171, 143]. There also exist

methods [114, 53] that leverage the textual information and the timestamp of the

tweets as well as location-related user profile information, that is, the profile location,

the UTC2 offset and the timezone; these methods do not however exploit the user

network information. To the best of our knowledge, only the recent works presented

in [143, 88] leverage information from the textual content and the timestamp of

the tweets as well as the user network and the user profile. However, as reported

in several studies [31, 80] location-related user profile information is often missing,

inaccurate or even misleading.

In order to address the aforementioned issues, we propose a novel multiview

1Global Positioning System
2Universal Time Coordinated

57

Chapter 4. Graph-based Deep Learning for Social Media Data Analytics

deep-learning-based method for predicting location of Twitter users. Deep neural

networks have been proven very effective in many domains, and recently there have

been a few studies using different variants of deep neural networks for Twitter

geolocation [127, 171, 114, 143]. While the works in [127, 171] are based solely

on textual content and metadata, our model leverages the textual information, the

relation of Twitter users represented via their interaction graph, and the timestamps

when tweets are posted. In addition, unlike [114, 143], the proposed model does not

rely on user profile information; thus, it can be applied to datasets and applications

that do not provide this type of information. Still, as our method is based on a

multiview model, it can consume data from multiple sources, including the user

profile if this information is available.

4.2.1 The Proposed Method

We design a deep neural network architecture, termed Multi-Entry Neural Network

(MENET), following multiview deep learning paradigm. MENET leverages differ-

ent views of Twitter data including textual features (Term Frequency – Inverse

Document Frequency [TF-IDF] [121], doc2vec [140]) extracted from tweets, a user

network feature (node2vec [71]) extracted from a graph of Twitter users, and time

information (tweet timestamp). In what follows, we discuss the motivation for using

these features and explain the details of how these features are extracted from

Twitter data.

The TF-IDF Feature

The term frequency-inverse document frequency (TF-IDF) is a well-established

weighting scheme widely used in information retrieval and text mining. TF-IDF

has also been used in several Twitter user geolocation studies [54, 172]. TF-IDF

is used to evaluate how important a term is to a document belonging to a corpus

of documents. The importance increases proportionally to the number of times the

term appears in the document but is offset by the frequency of the term in the

corpus. In this work, a document is a concatenation of tweets posted from a Twitter

user, also referred to as tweet document, and the corpus is the collection of all tweet

documents created by all considered users.

There are different formulations of TF-IDF. In this work, we rely on the popular

58

4.2. Twitter User Geolocation with Multiview Deep Learning

formulation implemented by sklearn3:

TF(t, d) =
ft
|d|
, (4.1)

IDF(t) = log(
1 + |D|

1 +
∣∣d ∈ D : t ∈ d

∣∣) + 1, (4.2)

TF-IDF(t, d) = TF(t, d)× IDF(t), (4.3)

where TF(t, d) is the frequency of the term t in the document d, ft is number of times

term t appears in document d, |d| indicates length in terms (words) of document d,

and |D| denotes the total amount of documents in the corpus D. To extract TF-IDF

for a given corpus, a vocabulary is extracted from the corpus. Each term is then

given weights versus documents in the corpus following formula (4.3). As a result, a

document is encoded by a vector of TF-IDF weights. The vector is then normalized

using the l2-norm.

By using the TF-IDF feature, we aim to capture the relation between area-

specific linguistic terms with the location of the user. The idea is borrowed from [56],

where the authors have shown that there exist a correlation between language

variations and geographical areas; the variations are indicated by certain terms.

Therefore, by using TF-IDF, salient terms related to specific areas can be revealed.

The Context Feature

The context feature is a mapping from a variable length block of text (paragraph) to

a fixed-length continuous-valued vector. The context feature in this work is obtained

through doc2vec [116] — a model that learns embeddings expressing the relation

between the context and the corresponding words. The idea is that a certain context

is more likely to produce some sets of words than others. Doc2vec is a simple

extension to word2vec [140]. Given as input a word wI , word2vec predicts the context

word wO by maximising the log probability of logP (wO|wI). In doc2vec, the input

is a vector representing the paragraph. The objective is to predict a context word

given the paragraph and word vectors. After being trained, the paragraph vectors

can be used as features for the considered block of text. In this work, we train the

model using the distributed bag of words (PV-DBOW) method as it is known to

perform robustly on large datasets [113].

Doc2vec captures the semantics of paragraphs. In addition, it takes into con-

sideration the order of terms [116]. In this regard, the doc2vec embeddings can be

considered as the complement of the TF-IDF feature (Section 4.2.1). In our work,

the embeddings are computed for single tweets, day partitions of tweets, or tweet

documents. In the first and second cases, the embeddings maintain the temporal

3https://scikit-learn.org/stable/modules/feature extraction.html

59

https://scikit-learn.org/stable/modules/feature_extraction.html

Chapter 4. Graph-based Deep Learning for Social Media Data Analytics

Figure 4.1: The creation of Twitter user graph via mentioning. User 2 mentions User 1, thus, we
create an edge between them. User 1 and User 3 both mention the User X; therefore, we make a
connection between User 1 and User 3.

order, and can be leveraged by sequential models such as RNNs. Representations of

entire tweet documents are used with fully connected networks. In Section 4.2.2, we

experimentally show the contribution of doc2vec feature to the performance of the

proposed models.

The Node2vec Feature

Node2vec is a method proposed in [71] to learn expressive continuous feature rep-

resentations (embeddings) for nodes in graphs. The local connectivity in the neigh-

borhood of a node is represented by a low-dimensional feature vector. Node2Vec

learns node embeddings following an unsupervised learning fashion; the learned

embeddings therefore become the input of other machine learning algorithms. Being

efficiently computational, Node2Vec has been widely and successfully used in many

applications (see Chapter 3, Section 3.4.2).

In the context of Twitter user geolocation, each node corresponds to a user,

while an edge is the connection between two users. Similar to [170, 171], we use the

content of tweet messages to build an undirected user graph, employing mentioning

interaction as depicted in Figure 4.1. An edge is assigned a weight equal to the

number of mentions between two users. We define a list of the so-called celebrities,

which are mentioned by more than C > 0 unique users.4 The connections to the

4The threshold C > 0 refers to the number of mentions a user receives from the other users
(incoming mentions). A user that mentions C or more other users (outcoming mentions) is still
considered as part of the network and the corresponding node still exists in the graph.

60

4.2. Twitter User Geolocation with Multiview Deep Learning

celebrities are non-informative and are removed; thus, the celebrities are treated as

isolated users. The node2vec algorithm can only produce embeddings for nodes that

are connected to the graph. For this reason, we use an all-zero vector to represent an

isolated node. At this point, the Twitter users corresponding to the isolated nodes

are geolocated via other features. Moreover, whenever a new node joins the graph,

we need to rerun the algorithm to update feature vectors for all nodes. Therefore,

this method is inherently transductive, which has difficulty to generalize to unseen

users. In our future work, inductive approaches will be considered.

By using node2vec, we can encode the local connectivity pattern of the Twitter

user graph, which contains the relations of users. These relations are very helpful in

predicting the locations of users [8, 94, 37]. The reason lies in the high intra-region

locality among users and their followers, which has been reported in several stud-

ies [8, 93]. The significant role of node2vec in the considered tasks is experimentally

shown in Section 4.2.2.

The Timestamp Feature

Messages posted on Twitter are always associated with timestamps. In many

commonly used Twitter datasets like GeoText [56] and UTGeo2011 [178], the

timestamps of all tweets are available in terms of the UTC (Coordinated Universal

Time) value. The timestamps could be an indication for location of users as people

tend to post messages during the daytime or evening more than posting after

midnight. This implies a correlation between the posting time and longitude of

the location where users reside. This observation allows us to leverage another view

of the data, similar to the works of [114, 136]. We obtain the timestamp feature for

a given user as follows. Firstly, we extract the hour values from the timestamps of

all tweets of the user. Then, a 24-dimensional vector is created corresponding to 24

hours in a day; the i-th element of this vector is set equal to the number of messages

posted by the user at the i-th hour. This feature is normalized with l2-norm before

feeding it to our neural network model.

Model Architecture

Our generic MENET architecture is illustrated in Figure 4.2. The model leverages

different types of features extracted from the tweets’ content and metadata (e.g.,

timestamps). Each corresponds to one view of the network. In Figure 4.2, k features

are put into k individual branches. Each branch may contain multiple transformation

steps, which can be realized by different variants of neural networks, which allows

to learn higher order features. The output of these branches are eventually fused

following an intermediate fusion strategy (see Chapter 2, Section 2.3.6).

The generic MENET can be instantiated to specific instances by leveraging

standard neural architectures (e.g., FCNs, CNNs and RNNs) for individual branches

61

Chapter 4. Graph-based Deep Learning for Social Media Data Analytics

Figure 4.2: Generic architecture for multi-entry neural network (MENET). MENET accepts
various features to its input branches. Each branch may contain many hidden layers and the outputs
of these branches, which are high level features, are fused following the intermediate fusion strategy.

and using four types of features mentioned earlier. Figure 4.3 shows the realization

of MENET with FCNs, termed FC-MENET. Each branch consists of several hidden

fully connected layers. Likewise, the fusion module is also comprised of some fully

connected layers. As CNNs have been shown to be very effective in learning text

representation, it is tempting to leverage this type of architecture in our model.

Figure 4.4 shows the realization of the generic MNET with both a CNN module and

FCNs; we refer to this architecture as CNN-MENET. Specifically, the first branch

of the FC-MENET is replaced by a CNN module. The module takes as input tweet

documents encoded into matrices using doc2vec as presented in Figure 4.5. We have

also realized the generic MENET with a LSTM module, which we refer to as RNN-

MENET. The module takes as input the doc2vec embeddings of day partitions of

tweets; the tweets in a partition are ordered chronologically. The motivation behind

the use of LSTMs is to capture the temporal inter-relation across the data generated

by a user. The RNN-MENET architecture is presented in Figure 4.6.

The MENET models are designed for the Twitter user location prediction

tasks. Still, the models (e.g., generic MENET) can be used for various applications

involving multiview and graph-structured data. For instance, detecting fake news on

social media requires the data from news content, social media users who interact

with the news, and publishers; the users form a graph. Similarly, MENET can be

used for bot detection on social media by considering multiview graph-structured

data from user profiles, social media posts and the user graph. Also, applications

in other domains such as image classification can leverage the principle of MENET.

For instance, one may design a network with two branches, where one branch uses

CNNs to capture local patterns and the other branch exploits the graph structure

of images to capture global patterns.

62

4.2. Twitter User Geolocation with Multiview Deep Learning

Figure 4.3: Realization of FC-MENET with four types of input features including TF-IDF,
node2vec, doc2vec and timestamp.

Training MENET

We train MENET with mini-batches using the Adam optimization algorithm [101],

which optimizes the cross-entropy objective function as defined in (2.16). In order

to address over-fitting, we leverage l2 regularization and early stopping techniques.

The l2 regularization adds an additional term to the objective function, penalizing

weights with big absolute values. Even though it is a common practice to regularize

weights in all layers, we empirically found that regularizing only the final output

layer still effectively handles over-fitting, and does not affect the model’s capability.

This, eventually, results in better classification results. We have also tried dropout

for the proposed models (see Chapter 2, Section 2.5). However, adding dropout did

not bring an improvement for FC-MENET and its variants on considered datasets.

Therefore, we eventually removed dropout from our models.

The parameters of MENET are fine-tuned using a separated set of examples,

namely the development set. During training, the classification accuracy of the model

on the development set is continuously monitored. If this metric does not improve

for a pre-defined amount of consecutive steps Tval, the training process is stopped.

By using the same mechanism, the learning rate is also annealed when the training

proceeds.

Testing MENET

To predict the location of users from the test set, we use the trained MENET model

to classify these users into pre-defined classes (geographical regions). The exact

geocoordinates of a user is given by the centroid of the respective region, which is

calculated by taking the median of the coordinates of the vertices specifying the

63

Chapter 4. Graph-based Deep Learning for Social Media Data Analytics

Figure 4.4: The architecture of the CNN-MENET model.

Figure 4.5: The detailed realization of the CNN module based on [100]. The input to the CNN
module consists of multiple single-tweet or day-partition-tweet embeddings arranged in a matrix.

64

4.2. Twitter User Geolocation with Multiview Deep Learning

Figure 4.6: Unrolled RNN-MENET architecture. The inputs to the LSTMs are single-tweet or
day-partition-tweet embeddings.

region. The performance of the MENET model is measured by the classification ac-

curacy in case of regional classification task is considered. Otherwise, distance error

metrics (see Section 4.2.2) are used in case of predicting geographical coordinates.

Improvements with S2 adaptive grid

When addressing the prediction of users’ location as a classification problem, the

geographical coordinate assigned to a user with unknown location equals the centroid

of the class, which has been predicted for the user. A straightforward way to form

the classes is to use administrative boundaries, e.g., states, regions or countries. Such

an approach brings large distance errors if the respective areas are large and the

distribution of user location is unbalanced. Intuitively, the prediction accuracy could

be improved if we increase the granularity level by defining classes corresponding

to smaller areas. The tiling should also consider the distribution of users; very

imbalanced custom classes should be avoided, otherwise, the training process will

not be efficient. Therefore, finding an appropriate way to subdivide users into custom

small geographical areas is critical.

An early work by Roller et al. [178] has built an adaptive grid using a k -d

tree to partition data into custom classes. Though this partitioning considers the

distribution of users, it does not necessarily produce uniform cells at the same level.

Here, we split the Twitter users in the training set into small areas called S2 cells,

using Google’s S2 geometry library. This library is a powerful tool for partitioning

the earth’s surface. Considering the earth as a sphere, the library hierarchically

subdivides the sphere’s surface by projecting it on an enclosing cube. On each surface

of the cube, a hierarchical partition is made using a spatial data structure named

65

Chapter 4. Graph-based Deep Learning for Social Media Data Analytics

quad-tree. Each node on the tree represents an S2 cell, which corresponds to an area

on the earth’s surface. The quad-tree used in the Google S2 geometry library has

a depth of 30; the root cell is assigned the lowest level of zero and the leaf cells

are assigned the highest level of 30. The library outputs mostly uniform cells at the

same level. For instance, the minimum area of level-12 cells is 3.31 km2 and the

maximum area of these cells is 6.38 km2.

We build an S2 adaptive grid, aiming at a balanced tiling, meaning that the

defined cells (geographical areas) contain a similar number of users. For this reason,

we specify a threshold Tmax, as the maximum number of users per cell. We build

the grid from bottom to top. First, we identify the leaves corresponding to given

geocoordinates. As long as the total number of users in children nodes (cells) is

smaller than Tmax, we merge these nodes together; the children nodes’ users are

assigned to the parent cell, i.e., a larger geographical area. We climb up the tree

gradually repeating this process. If we reach a specific level, Lmin, we stop the climb

in order to avoid creating cells that correspond to large geographical areas; otherwise,

the prediction error would increase. The details of the splitting procedure using the

S2 library are presented in Algorithm 4. Figures 4.7 and 4.8 show the subdivision

66

4.2. Twitter User Geolocation with Multiview Deep Learning

of users in S2 cells for two of the considered datasets.

Algorithm 4: S2 Partitioning Algorithm.

input: Set of user location coordinates G = {(lngi, lati)}Ni=1, limit number

of users per cell Tmax, minimum cell level Lmin

output: Set of cells C = {ci}Ki=1 such that min depth(C) = Lmin, and ci
has no more than Tmax users, ∀i ∈ {1, . . . ,K}

1 initialization: l← 30 ;

2 generate leaf nodes using S2 library: C ← GenerateLeaftNodes(G) ;

3 while l > Lmin do

4 P = {∅} ;

5 S = {∅};
6 for c ∈ C do

7 P = P ∪ c.parent ;

8 end

9 for p ∈ P do

10 if CountLocation(p) < Tmax then

11 if p contains si, si ∈ S then

12 continue ;

13 C ← C \ p.children ;

14 C ← C ∪ p;
15 else

16 S ← S ∪ p
17 end

18 end

19 l← l − 1 ;

20 end

21 return: C

4.2.2 Experimental Evaluation

In this section, we present experiments with the proposed models on several

benchmark datasets. We test our models in both region classification and geo-

coordinates’ estimation tasks, and compare them with the state of the art. We

investigate the factors that may affect the performance of the proposed models,

that is, the employed features and the parameters used for partitioning. We also

investigate the use of different partitioning techniques. Before demonstrating our

experimental results, we present some details concerning the employed datasets and

the experimental settings.

67

Chapter 4. Graph-based Deep Learning for Social Media Data Analytics

(a) (b)

Figure 4.7: Partitioning Twitter users for (a) the GeoText [56] and (b) the UTGeo2011 [178]
dataset with S2 cells, using Lmin = 6 for both datasets, while Tmax is set to 500 and 10.000,
respectively. Highly dense cities, like New York, are split in small cells while most of other regions
reach Lmin because of the small amount of users. The tiling does not cover the whole US area
because there are regions without tweets.

Figure 4.8: Partitioning Twitter users for the TwitterWorld dataset with S2 cells. We can see that
in this dataset most of tweets come from Europe, India and United States.

Datasets

In our experiments, we employ the three benchmark datasets. The first two data-

sets contain tweets coming from the United States including GeoText [56] and

UTGeo2011 [178]). The third dataset, called TwitterWorld [75], consists of tweets

posted all over the world. For these datasets, the division into training, development

(a.k.a., validation), and testing sets are given. We follow these division settings to

ensure a fair comparison against existing methods.

GeoText: This is a relatively small dataset containing more than 370,000 tweets

68

4.2. Twitter User Geolocation with Multiview Deep Learning

posted by 9,475 unique users from the US, during the first week of March 2010.

In this dataset, the tweets from each user are concatenated into a tweet document

and the geocoordinates of the first tweets are used to indicate the user’s primary

location [56, 178, 170]. The dataset is split into training, development and testing

sets containing 7,580, 1,895 and 1,895 disparate users, respectively.

UTGeo2011: This dataset [178], which is also referred to as TwitterUS in many

studies [170, 171, 139], contains approximately 38 million tweets sent by 449,694

users from the US. In contrast to GeoText, it is characterised by veracity; namely,

many tweets have no location information. To treat it similarly to GeoText, the

tweets from a specific user are concatenated into a single document and a primary

location is defined as the earliest valid coordinate of the tweets of a user. Ten

thousand users are selected randomly to make the development set and the same

amount is reserved for the evaluation set. The remaining users form the training set.

TwitterWorld: This dataset [75] contains users from different countries in the world;

however, only tweets in English and close to a city are retained. The dataset contains

12 million tweets sent by 1.39 million users of which 1.37M are used for the training

set, 10,000 for the development and 10,000 for the testing set. The primary location

of a user is considered to be the centre of the city where most of her/his tweets

were sent. Unlike GeoText and UTGeo2011, this dataset provides purely textual

information; namely, the timestamps of the tweets are not available.

The location of a user is indicated by a pair of real numbers, namely, latitude

and longitude. However, classification models need discrete labels. For the datasets

collected from the US, we create the class labels similar to [56, 178]. We use

information related to administrative boundaries from Census Divisions5, and rely

on the Ray Casting algorithm [187] to decide if a location is inside a region or state’s

boundary. The same strategy was followed by [127, 22], thus, comparison with these

methods is straightforward. For location prediction in terms of geocoordinates, we

perform experiments with other partitioning techniques as well; more details on the

settings and the results of these techniques will follow in the next section.

Performance Criteria and Experiment Design

The proposed model for the geolocation of Twitter users addresses the follow-

ing tasks: (i) four-way classification of US regions including Northeast, Midwest,

West and South, (ii) fifty-way classification to predict the states of users, and

(iii) estimation of the real-valued coordinates of users, i.e., latitude and longitude.

For the region and state classification tasks, we compare the performance of the

5https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us regdiv.pdf

69

Chapter 4. Graph-based Deep Learning for Social Media Data Analytics

proposed models with existing methods by calculating the classification accuracy,

that is, the percentage of correctly classified users. Considering the estimation

of the user coordinates, we measure the distance between the predicted and the

actual geocoordinates using the Haversine formula [192], and calculate the mean

and the median values over the testing dataset. Another common way to measure

the success of coordinate estimation is to calculate the percentage of estimations with

geolocation accuracy smaller than 161 km (161 km ∼ 100 miles); this metric, known

as accuracy @161, has been used in many works [178, 215, 170, 171]. It is worth

noting that for the classification accuracy and the accuracy @161, the higher values

indicate a good prediction while lower values for the mean and median distance

errors are desired.

In our experiments, besides the proposed deep multiview models (FC-MENET,

RNN-MENET, CNN-MENET), we also employ a naive multiview model obtained by

simply concatenating the four features (TF-IDF, node2vec, doc2vec and timestamp)

in the input layer. To apply dimensionality reduction of the multiview input, a

hidden layer with 800 neurons (similar to the fusion layer of MENET) is added after

the concatenation layer, followed by a softmax classifier. We refer to this model as

Concatenation model. A variant of the Concatenation model is also realized with

a low-dimensional multiview input obtained after applying Principal Component

Analysis (PCA) to the concatenated features. We refer to this model as Concate-

nation+PCA model. In order to compare the performance of the proposed models

against traditional approaches, we leverage the XGBoost framework [30], which

has been widely used for training gradient boosted decision trees. Furthermore, we

provide experimental results for the EmbraceNet model [33], which is capable of

combining the representations of multiple modalities in a probabilistic manner, on

the considered datasets.

Concerning the classification tasks (i) and (ii), we conduct experiments on the US

Twitter datasets, namely GeoText and UTGeo2011. For predicting Twitter users’

geocoordinates, experiments are performed on the three datasets. The partitioning of

the considered geographical area, for tasks (i) and (ii), is made using administrative

boundaries. The experiments for geographical coordinate prediction [task (iii)] use

different sets of labels created by S2, k-d tree and k-means partitioning.

Data Pre-processing and Normalization

Before computing doc2vec and TF-IDF features, a simple pre-processing phase

is required. First, we tokenize the tweets and remove stop words using nltk6, a

dedicated library for natural language processing (NLP). Following common practice

in NLP, we replace URLs and punctuation by special characters, which results in

reducing the size of the vocabulary without harming the semantics of tweets. Again,

6http://www.nltk.org/

70

4.2. Twitter User Geolocation with Multiview Deep Learning

0 20 40 60 80 100
Edges.

0

200

400

600

800

1000

1200

1400

1600

No
de

s

0 20 40 60 80 100 120
Edges.

0

20000

40000

60000

80000

No

de
s

0 5 10 15 20 25 30
Edges.

0

50000

100000

150000

200000

250000

No

de
s

(a) GeoText (b) UTGeo2011 (c) TwitterWorld

Figure 4.9: Edge distribution of graphs.

Table 4.1: Characteristics of Twitter users’ graphs.

GeoText UTGeo2011 TwitterWorld

Node 9,475 449,508 1,386,766

Edge 55,640 5,297,215 1,076,462

nltk is used for stemming in the last stage of pre-processing.

Normalization is a common step to pre-process data before applying machine

learning algorithms. Data can be normalized by removing the mean and dividing by

the standard deviation. Alternatively, samples can be scaled into a small range of

[0, 1] or [−1, 1]. The less common way is to scale the samples so that their module is

equal to 1, also known as l2-normalisation. In our case, the TF-IDF, node embedding

and context features are already scaled to the range [0,1]. We only apply l2-norm

normalization to the timestamp feature.

Parameter Settings

We now define the parameters used in the feature extraction techniques. Computing

TF-IDF using scikit-learn7 requires a minimum term frequency across documents,

denoted by min df. For the experiments on the GeoText dataset, we empirically

set min df=40. For the UTGeo2011 and TwitterWorld datasets, because of the

sheer volume of data, we set min df=500 and min df=400, respectively. Concerning

doc2vec, our implementation uses gensim8. We set the embedding size equal to 300

and the sampling window size equal to 10. We recall that the doc2vec feature is

computed on tweet documents for the FC-MENET. For RNN-MENET and CNN-

MENET, the doc2vec feature is computed for single tweets for the GeoText dataset

and day partitions of tweets for the UTGeo2011 dataset.

We have built the Twitter users’ graphs for the three datasets using mentions

extracted only from tweet messages as discussed in Section 4.2.1. Following [170], we

7https://scikit-learn.org/
8https://radimrehurek.com/gensim/

71

Chapter 4. Graph-based Deep Learning for Social Media Data Analytics

Table 4.2: Hyper-parameter setting for FC-MENET. For the TF-IDF, doc2vec, node2vec, and
timestamp features, the corresponding hidden layers denoted by h11, h21, h31, h41 consist of
nh11 , nh21 , nh31 , nh41 number of neurons, respectively.

Region/State classification Coordinates Prediction

Datasets
GeoText GeoText

UTGeo2011 UTGeo2011
TwitterWorld

nh11 150 100

nh21 150 300

nh31 30 300

nh41 30 100

set the celebrity connection threshold C to 5, 15 and 5 for GeoText, UTGeo2011 and

TwitterWorld, respectively. The statistics of the obtained graphs for the considered

datasets are presented in Table 4.1 and Figure 4.9. For the node2vec feature, we use

the code provided by the authors of [71]. We select the weighted graph option when

training the model, which takes into account the weights of edges. We choose an

embedding size equal to 300.

Choosing the right hyper-parameters (number and size of hidden layers) for

neural networks is always a challenge. In our experiments, these parameters are set

empirically. For FC-MENET, we have found that one hidden layer at each individual

branch is enough to produce expressive low-dimensional single-view representations;

we denote by h11, h21, h31 and h41 the hidden layers corresponding to the TF-IDF,

node2vec, doc2vec, and timestamp feature branch, respectively. We only use one

fusion layer, i.e., the concatenation layer. The network configuration is described

in Table 4.2. The proposed MENET models share most of the hyper-parameters

except for the hyper-parameters for RNN and CNN modules. Concerning the RNN-

MENET, we set the size of the hidden layer in the LSTM cells to 100. Regarding the

CNN-MENET, we use three types of filters with size 3, 4 and 5 for the three parallel

convolutional layers, respectively. The number of filters is set to 100. Similarly to

FC-MENET, we only use one fusion layer in the RNN-MENET and CNN-MENET

architectures.

We employ a simple grid search scheme for tuning the learning rate and regu-

larization parameter. Specifically, we use a list of small values for both parameters,

i.e., {0.0001, 0.0003, 0.001, 0.003, 0.01} for the learning rate, and {0.03, 0.1, 0.3}
for the regularization parameter. For each parameter combination, we run FC-

MENET and record the accuracy on the development set. We choose the learning

rate and regularization parameter that produce the best accuracy. This grid search

is performed on the smallest dataset, i.e., GeoText, and the obtained values, which

are 0.0001 for the learning rate and 0.1 for the regularization parameter, are used

for all datasets. The training procedure is performed using mini-batches with the

72

4.2. Twitter User Geolocation with Multiview Deep Learning

Table 4.3: Performance comparison on regional and state classification. N/A stands for not
available.

GeoText UTGeo2011

Region State Region State
(%) (%) (%) (%)

Eisenstein et al. [56] 58.0 27.0 N/A N/A

Cha et al. [22] 67.0 41.0 N/A N/A

Liu & Inkpen [127] 61.1 34.8 N/A N/A

XGBoost 74.2 59.7 N/A N/A

EmbraceNet 75.4 61.0 80.8 65.5

FC-MENET 76.0 64.4 83.7 69.0

RNN-MENET 76.7 60.9 82.9 65.9

CNN-MENET 74.4 60.2 82.9 66.6

Concatenation 75.1 63.0 83.0 68.2

Concatenation+PCA 74.5 61.6 75.5 58.1

Adam optimization algorithm [101]. The non-improving performance threshold Tval

(see Section 4.2.1) is set to 10 for the GeoText dataset and 6 for both UTGeo2011

and TwitterWorld.

Creating S2 grids requires setting the minimum cell level Lmin, and the maximum

number of users per cell Tmax. We have experimented with different settings and

reported the best results in Table 4.4 with Lmin = 6, Tmax = 500 for GeoText,

Lmin = 6, Tmax = 10.000 for UTGeo2011, and Lmin = 7, Tmax = 50.000 for

TwitterWorld. The number of S2 regions and the corresponding average area

obtained with these settings are the following: (306; 17,496.49km2) for GeoText,

(611; 17,418.48km2) for UTGeo2011 and (2569; 5,109.74km2) for TwitterWorld.

Results

After experimenting with different parameters, normalization techniques and feature

combination strategies, we report here the best obtained results. Table 4.3 presents

results for regional and state geolocation for the GeoText and UTGeo2011 datasets,

while for the prediction of user geographical coordinates, results are presented in

Table 4.4.

Regarding the results for regional classification on the GeoText dataset: As shown

in Table 4.3, all MENET configurations considerably outperform all previous results

with the best accuracy (i.e., 76.7%) achieved with the RNN-MENET and the second

best (i.e., 76%) with the FC-MENET model. Concerning the accuracy in state

classification for the GeoText dataset, FC-MENET achieves successful classification

for 64.4% of users and is closely followed by the Concatenation model with 63%. The

performance of the CNN-MENET and RNN-MENET is slightly worse. Compared

to the state of the art [22], FC-MENET achieves an improvement that rises to

73

Chapter 4. Graph-based Deep Learning for Social Media Data Analytics

Table 4.4: Performance comparison on geographical coordinates prediction. RNN-MENET and
CNN-MENET are trained with doc2vec embeddings at tweet level for GeoText, and at day partition
level for UTGeo2011. N/A stands for not available.

GeoText UTGeo2011 TwitterWorld

mean median @161 mean median @161 mean median @161
(km) (km) (%) (km) (km) (%) (km) (km) (%)

Eisenstein et al. [56] 900.0 494 N/A N/A N/A N/A N/A N/A N/A
Wing et al. (2011) [214] 967.0 479 N/A N/A N/A N/A N/A N/A N/A

Roller et al. [178] 897.0 432 35.9 860.0 463.0 34.6 N/A N/A N/A
Wing et al. (Uniform) [215] N/A N/A N/A 703.6 170.5 49.2 1714.6 490.0 32.7
Wing et al. (KD tree) [215] N/A N/A N/A 686.6 191.4 48.0 1669.6 509.1 31.3

Melo et al. [139] N/A N/A N/A 702.0 208.0 N/A 1507.0 502.0 N/A
Liu & Inkpen [127] 855.9 N/A N/A 733.0 377.0 24.2 N/A N/A N/A

Cha et al. [22] 581.0 425 N/A N/A N/A N/A N/A N/A N/A
Rahimi et al. (2015) [170] 581.0 57 59.0 529.0 78.0 60.0 1403.0 111.0 53.0
Rahimi et al. (2017) [171] 578.0 61 59.0 515.0 77.0 61.0 1280.0 104.0 53.0

XGBoost 648.1 63 56.7 N/A N/A N/A N/A N/A N/A
EmbraceNet 599.2 57 58.7 514.8 71.1 60.6 1108.2 186.7 48.0

FC-MENET with state labels 570.0 58 59.1 474.0 157.0 50.5 N/A N/A N/A
FC-MENET + S2 532.0 32 62.3 433.0 45.0 66.2 1044.0 118.0 53.3

RNN-MENET + S2 569.0 44 60.7 488.0 58.0 62.6 N/A N/A N/A
CNN-MENET + S2 567.0 49 60.2 475.0 55.0 63.3 N/A N/A N/A

Concatenation + S2 568.0 38 62.1 438.0 49.0 65.8 1054.0 134.0 52.1
Concatenation + PCA + S2 669.0 45 57.0 694.0 119.0 53.9 1058.0 130.0 52.3

23%. XGBoost and EmbraceNet also attain good regional and state classification

accuracy, still worse than FC-MENET9. The results for state classification are

similar on the UTGeo2011 dataset.

Recall that to estimate the geographical coordinates of Twitter users, we first

classify the user in a region and then calculate the centroid of this area. We

experiment with two types of regional classification: in the first set of experiments,

we use labels corresponding to the fifty states of the US and in the second, we employ

the S2 labels obtained with the Google S2 partitioning scheme. As can be seen in

Table 4.4, concerning the results obtained with state labels on the GeoText dataset,

FC-MENET delivers the smallest mean and median distance error and the best

accuracy @161, outperforming the state of the art. Similar performance with respect

to the mean distance error is also achieved for the UTGeo2011 dataset; however, the

median distance error and the accuracy @161 are worse. The performance of FC-

MENET is improved notably when S2 labels are used, since with this partitioning

approach the definition of regions takes into account the distribution of users. In

this case, the proposed FC-MENET outperforms the existing methods with respect

to all considered metrics for both the GeoText and the UTGeo2011 datasets. For

the TwitterWorld dataset10, the mean distance error is reduced by more than 200

9In Tables 4.3, 4.4, the results of XGBoost are not available for UTGeo2011 and TwitterWorld
because the model needs to see the whole datasets, causing a memory error on our experiment
desktop with 64 Gb of memory.

10The state partitioning scheme is not applicable to the TwitterWorld dataset because it contains
tweets from all over the world.

74

4.2. Twitter User Geolocation with Multiview Deep Learning

km compared to the state of the art [171], while the results for the other metrics

are similar to [171].

The geolocation results for the Concatenation models, RNN-MENET and CNN-

MENET are also included in Table 4.4. Regarding the RNN-MENET and CNN-

MENET models, results are only available for the GeoText and the UTGeo2011

datasets because the TwitterWorld does not provide the timestamps of tweets,

rendering it impossible to arrange tweets in a chronological order. Hence, the

FC-MENET and the Concatenation models are employed without timestamp fea-

tures for the TwitterWorld dataset. The achieved geolocation accuracy illustrates

the good performance of the MENET’s variants compared to the state of the

art [170, 171]. Except for the Concatenation+PCA model, all the other models

outperform [170, 171] with respect to all metrics on both the GeoText and UT-

Geo2011 datasets. Nonetheless, the RNN and CNN variants still perform worse

than the FC-MENET. This can be explained by the fact that the RNN-MENET and

CNN-MENET models focus on capturing the temporal inter-correlation of tweets,

while the FC-MENET can leverage location indicative words from tweets. Han

et al. [75] showed that location indicative words are important in predicting the

location of Twitter users. Similarly, the simple Concatenation models, XGBoost

and EmbraceNet deliver lower accuracy than FC-MENET.

It is worth mentioning that the number of employed geographical regions

(classes) is critical for the performance of the proposed MENET models. A large

number of classes results in small geographical regions, which may improve the

geocoordinates prediction. On the other hand, training a model with many classes

is more difficult, thus, the classification task may perform worse. The number of

classes has also an impact on the considered metrics as large geographical areas

may lead to a high mean distance error. In subsequent sections, we investigate the

performance of FC-MENET under different parameter settings of the Google S2

partitioning library, and discuss this trade-off.

Feature Analysis

The FC-MENET architecture combines multiple views to achieve an improvement

in the learning performance. In this section, we investigate the contribution of each

feature to the discriminative strength of the model. We conduct additional experi-

ments with different combinations of features, and report results for the prediction

of geocoordinates. Concretely, we eliminate a feature by removing a branch from

FC-MENET and perform experiments with the rest, known as the ablation setting.

Furthermore, we investigate the performance of FC-MENET with respect to a single

feature by dropping the other features. For a fair comparison, we use the same

parameter setting for FC-MENET as in the experiments with the full feature set. All

experiments are conducted on the GeoText dataset, using S2 labels with Lmin = 6

75

Chapter 4. Graph-based Deep Learning for Social Media Data Analytics

Table 4.5: Performance of FC-MENET on the GeoText dataset in the ablation setting. The results
for the 4-feature FC-MENET indicated by (-) are copied from Table 4.4.

Dropped Feature Mean (km) Median (km) @161 (%)

TF-IDF 571 35 61.4

Node2vec 894 480 36.5

Doc2vec 685 65 55.4

Timestamp 555 33 62.0

– 532 32 62.3

Table 4.6: Performance of FC-MENET on the GeoText dataset in the single feature setting. The
results for the 4-feature FC-MENET indicated by “All” are copied from Table 4.4.

Selected Feature Mean (km) Median (km) @161 (%)

TF-IDF 988 518 36.1

Node2vec 676 44 58.0

Doc2vec 1047 554 34.0

Timestamp 1372 942 12.8

All 532 32 62.3

and Tmax = 500. The results are presented in Table 4.5 and Table 4.6.

The results from the ablation setting show that the user network information

(extracted by node2vec) is critical. Removing this feature leads to a large reduction of

the obtained performance in terms of mean distance error (−68%), median distance

error (−1400%) and accuracy @161 (−41%). In addition, using only the user network

information for FC-MENET leads to the best performance in the single feature

setting, achieving 676 km for mean distance error, 44 km for median distance error

and 58% for accuracy @161. On the other hand, the contribution of doc2vec is

also noticeable; dropping this feature results in an increase of more than 100 km

in terms of mean distance error compared to the full feature set. Interestingly, in

the single feature setting, doc2vec is shown to be a weak feature, meaning that it

delivers the second worse performance. However, the results in Table 4.5 suggest that

a weak feature like doc2vec could have an important contribution when combined

with multiple features. On the contrary, a strong feature like TF-IDF has a low

contribution in the full feature setting. The timestamp is the weakest feature,

delivering the lowest performance in the single feature setting, whereas, removing it

from the full feature setting results in a marginal decrease in the three considered

criteria.

Feature Extension

In this section, we will investigate the performance of an extended-feature FC-

MENET, by integrating an additional input feature to our architecture, namely,

76

4.2. Twitter User Geolocation with Multiview Deep Learning

Table 4.7: Performance of FC-MENET variants using the topic feature, on the GeoText dataset.
The results for the 4-feature FC-MENET are copied from Table 4.4.

FC-MENET variant Mean (km) Median (km) @161 (%)

single topic feature 1092 881 22.5

extended 5-feature 537 32 62.5

4-feature 532 32 62.3

Table 4.8: Performance of FC-MENET on the GeoText dataset with k-d tree and k-means
partitioning.

Label Type Mean (km) Median (km) @161 (%)

k-d tree 573 120 53.8

k-means 538 49 61.0

S2 532 32 62.3

the topic feature. The idea is inspired by topic-model-based geolocation approaches,

which rely on the assumption that words are generated from hidden topics and

geographical regions [56].

Topic models aim to extract the hidden topics from large volumes of text.

The topics emerge during the topic modelling process. Latent Dirichlet Allocation

(LDA) [13] is a popular topic modelling technique. In this work, we train an LDA

model and extract the topic feature using the Python package gensim. The number

of considered topics is a parameter of the topic feature model and is set to 20, as

it produces the highest coherence score [177]. For each document, the topic feature

is obtained as the vector containing the probabilities of the detected topics. We

integrate the topic feature by adding a new fully connected input branch to FC-

MENET, obtaining a 5-feature FC-MENET. The number of hidden neurons is set

to 30. The rest of FC-MENET remains the same.

Besides the performance of the extended 5-feature FC-MENET, we also inves-

tigate the performance of a single-feature FC-MENET network that uses only the

topic feature. Both experiments are conducted on the GeoText dataset, using S2

labels with Lmin = 6 and Tmax = 500, and results are presented in Table 4.7. As

can be seen, the topic feature itself brings a mean distance error of 1092 km, which

is very close to that of doc2vec (see Table 4.6). On the other hand, by adding

the topic feature to the full feature set, the @161 is marginally improved, the

median distance error does not change, while the mean distance error is slightly

worse. Hence, although the topic feature is useful for user geolocation, the overall

improvement is small.

Similar to the results presented in Section 4.2.2, the results involving the topic

feature show that the contribution of an input feature to the performance of FC-

MENET depends on the combination of all the employed features. Increasing the

77

Chapter 4. Graph-based Deep Learning for Social Media Data Analytics

number of input features does not necessarily improve performance; therefore,

finding a good combination of features is not an easy task. The results also suggest

that the text-based features used by the proposed models could be further improved.

A possible extension could be the feature that considers prior geographic probabil-

ities [70]. Additionally, more advanced text embeddings such ELMO (Embeddings

from Language Models) [164] or BERT (Bidirectional Encoder Representations from

Transformers) could be considered [45]. We leave this research for our future work.

Performance of MENET with regard to Observed Partitioning

In Table 4.4, we have reported a notable improvement in the performance of FC-

MENET using the Google’s S2 geometry library. Other partitioning techniques

used by Twitter user geolocation methods [171, 170, 139] include the use of k-

d tree [10] and k-means [135] clustering algorithms, and a method referred to as

Hierarchical Equal Area isoLatitude Pixelization of a sphere (HEALPix) [68]. In

this section, we investigate the performance of FC-MENET with respect to k-d

tree and k-means subdivisions. Our experiments are conducted on the GeoText

dataset. Following [171], we set the number of regions (classes) to 32. This leads

to an average area of 236,968.72 km2 and 145,761.03 km2 for k-d tree and k-means

regions, respectively11.

As can be seen in Table 4.8, k-means is better than k-d tree in partitioning

Twitter users, in the sense that it can mitigate the geolocation errors. Concretely,

using the k-means labels reduces the mean distance error more than 30 km. The

median distance error reduces by 50% while the accuracy @161 is improved by

roughly 7%. The performance of FC-MENET with the k-means labels is close to

that of S2 labels. Nevertheless, the S2 partitioning scheme is more stable in creating

labels compared to k-means, and is more flexible in controlling the median distance

error, leading to better results for all performance criteria.

Performance of MENET with Different S2 Region Granularity

In Algorithm 4, the minimum S2 cell level (i.e., Lmin) and the maximum number

of users per cell (i.e., Tmax) are the two input parameters deciding the number and

size of S2 regions (classes). Table 4.4 shows the results with Lmin = 6 and Tmax =

500. This section explores the performance of our method with regard to different

S2 parameter settings. As FC-MENET appears to have the best performance, we

consider only the FC-MENET model. In addition, the GeoText dataset is chosen

for this experiment.

Table 4.9 presents experimental results concerning different values of minimum

S2 cell levels (i.e., Lmin ∈ [3, 8]) where we set Tmax = 500. The results show a clear

11The regions created by k-d tree and k-means are convex hulls containing the geographical
coordinates of Twitter users (see [171]).

78

4.2. Twitter User Geolocation with Multiview Deep Learning

Table 4.9: Performance of FC-MENET on the GeoText dataset with respect to different Lmin.
Tmax is set to 500.

Lmin Region count Mean (km) Median (km) @161(%)

3 71 554 71 58.6

4 89 546 65 59.3

5 148 534 47 60.7

6 306 532 32 62.3

7 590 574 28 62.0

8 947 706 46 55.3

Table 4.10: Performance of FC-MENET on the GeoText dataset with respect to different Tmax.
Lmin is set to 6.

Tmax Region count Mean (km) Median (km) @161(%)

100 470 1257 877 25.8

200 353 581 33 61.5

300 333 564 33 62.1

400 318 559 33 62.0

500 306 532 32 62.3

600 300 576 35 61.5

trend in the median of the distance error, which decreases to a very small value (i.e.,

28 km), when Lmin increases, that is, more regions are generated. The area of S2

cells at a higher level is smaller, thus, the predicted location is more likely to be

closer to the ground truth location as long as the classification performance does

not get significantly worse due to the increase in the number of classes. This also

explains the increasing trend in accuracy @161. However, there is no clear trend in

the mean distance error. This is explained by the sensitivity of the mean with regard

to the outliers. If the classification accuracy is slightly reduced, it may bring notable

distance errors from large area cells. While the impact on the median distance error

is negligible, this has a large impact on the mean value.

Table 4.10 presents experimental results for different values of Tmax (i.e.,

Tmax ∈ [200, 500]), where we set Lmin = 6. When Tmax increases, fewer geographical

regions are created, leading to better classification performance and in turn, the

mean distance error decreases. On the contrary, the median distance error and the

accuracy @161 remain stable as the classification accuracy in this range only slightly

varies. When, however, the number of geographical regions increases remarkably

(see results for Tmax = 100) the geolocation accuracy decreases notably. Figure 4.10

shows an example subdivision of the GeoText dataset for different values of Tmax,

when Lmin = 6. As can be seen, for Tmax = 500 the geographical region (cell)

produced by the partitioning algorithm covers the area of the Atlanta city. The

definition of the corresponding class is in accordance with the distribution of users,

79

Chapter 4. Graph-based Deep Learning for Social Media Data Analytics

(a) Tmax = 100 (b) Tmax = 300 (c) Tmax = 500

Figure 4.10: Partitioning of the Atlanta region with minimum S2 level Lmin = 6 for different
user threshold values Tmax. The black dots represent the locations of the users contained in the
GeoText dataset.

which naturally exhibits a higher density in the city centre. When Tmax = 100 high

density regions are split in smaller cells, thus, the discrimination does not follow

the natural distribution of users. In this case, the probability of misclassification

becomes higher.

4.3 Fake News Detection with Graph Convolu-

tional Neural Network

Social media platforms with hundreds of millions users have the advantage of quickly

and freely disseminating information. Nevertheless, unverified and fake information

finds the social media platforms a breeding ground. Fake news, intentionally written

for financial incentive, political influence or other purposes is very difficult to detect.

It often requires expert knowledge to judge a meticulously manipulated piece of

misleading news. Therefore, online users, who usually just skim posts on social

networks, are likely to spread fake news. Fake news is believed to be a severe social

problem because it causes harm not only to a single person but also to societies and

countries. More precisely, fake news might have adverse effect on big corporations,

social inter-class contradictions, propagating hatred and distrust among citizens. As

an example, in September 2016, a black man in the Boston area was allegedly to be

killed by a police officer named Thomas Wright for merely refusing to put out his

marijuana cigarette. The reported unfair treatment of police officers to black men

once stimulated the rage of black man communities towards the local police office

and the white people in the U.S. However, this incident was judged as a fake news in

the following days [194]. Fake news is also believed to play a role in the US president

80

4.3. Fake News Detection with Graph Convolutional Neural Network

election in 2016 [176]. These examples, and many others, advocate that an efficient

method for automatic fake news detection is desperately needed.

In this section, we introduce a novel method for automatically detecting fake

news based on graph convolutional neural networks (GNNs) [103], an exciting

research topic in deep learning. The proposed deep model outperforms state-of-

the-art methods in the task of fake news detection.

4.3.1 The Proposed Method

We consider the problem of detecting fake news on social media platforms as a

binary classification problem, namely we aim to classify a news item to fake or

true. A news item shared on social media is often associated with three entities

including a publisher, a social media user and an event that is described by the

news item [189]. The publisher is where the news is published, e.g., a website such

as www.dailymail.co.uk. The user refers to the person who involves with the news by

actions such as sharing. The relationships between the three entities are illustrated

in Figure 4.11.

In order to address the fake news detection problem, we propose to use the

graph convolutional neural network (GCN) created by Kipf et al.(GNNs) [103]. The

motivation of using the GCN is that we want to exploit the ternary relationship

between events, publishers and users. Concretely, if a publisher spreads a fake news

before, it is likely that he/she will repeat this action. As a result, news items

published by the same publisher may have similar level of credibility. The same

reasoning could be applied for news items shared by the same social media user.

On the other hand, GCNs have been proven to perform very well on relational

structured data. In order to leverage the strength of GCNs, we first build a graph of

events. The classification of events will be done by the GCN directly on this graph

in a semi-supervised manner.

Graph Construction

There are three entities involved in the fake news life cycle: the publishers, the events

and the users on social networks. Figure 4.11 shows the relationship among them.

By exploiting this relationship to infer the correlation between the labelled and

unlabelled events, we can classify the unlabelled. Some publications have already

explored this concept using label propagation-based techniques [206]. In our work,

instead of using these label propagation algorithms, we employ a GCN [103] to do

the prediction.

A graph of articles is constructed as follows. We consider an event as a node

and we make the edges between the nodes as follows. If two articles are published

by the same publisher, a connection between them is established. Furthermore, if a

social user engages two events, these articles should also be connected. The weight

81

www.dailymail.co.uk

Chapter 4. Graph-based Deep Learning for Social Media Data Analytics

e1 e3

e2 e4

𝐴!" = 2

𝐴#" = 1

𝐴"$ = 1𝐴#! = 2

(a) Ternary relationship (b) Graph of events

Figure 4.11: Three considered entities in news propagation (left) and the graph of events (right).
Nodes e1 and e2 are connected as they have the same publisher p1 and share the same user u1,
leading to a weight A12 = 2.

of an edge is the number of times two articles are connected. Figure 4.11 shows how

the news graph is created. We can see that event e1 is connected to event e2 because

they are published by the same publisher p1. Events e3 and e4 are linked because

user u3 refers to these events.

Graph Convolutional Network Architecture

The problem of classification on graph-structured data can be addressed using graph

convolutional neural networks (GCNs). Figure 4.12 shows the general architecture

of a GCN in an unrolled manner. Similar to classical neural networks, a GCN has an

input layer, hidden layers and an output layer. The input layer receives the C-channel

signal of the graph, then the signal is transformed at the hidden layers. Finally, at

the output layer, the signal is converted to probabilities using the softmax function.

For news classification, we build a simple GCN architecture with two hidden

layers. Denote the features of news items by X ∈ RN×F , the GCN model for fake

news binary classification can be expressed by

Z = σ
(
Â
(
ÂXΘ1

)
Θ2

)
, (4.4)

Y = softmax(Z), (4.5)

where Â = D̃−
1
2 ÃD̃−

1
2 denotes normalized adjacency matrix of the underlying

graph, Θ1 and Θ2 are parameter matrices of the model, and Y represents the

output probabilities. A detailed explanation of the GCN model can be found in

Chapter 3. We have selected the standard cross-entropy defined in 2.16 as the loss

function for our model. The weights of the model are trained using the stochastic

82

4.3. Fake News Detection with Graph Convolutional Neural Network

Figure 4.12: Schema of a Graph convolutional neural network architecture. C is number of input
channels (e.g. a C-dimensional feature vector of each node), F is number of feature maps in the
output layer and N is the size of the hidden layer.

gradient descent algorithm. As with Twitter user geolocation, we rely on the Adam

algorithm to optimize the objective function [101]. The feature vector of each node

is extracted from the corresponding event’s description. Specifically, we compute

word2vec embeddings [140] for each term in the news content and take the average

of these embeddings to obtain the unique vector representation for the event.

This weighting scheme produces a simple but expressive feature vector for event

classification.

4.3.2 Experimental Evaluation

Dataset

We employ the FakeNewsNet dataset [188] which consists of two small datasets,

namely BuzzFeed and PolitiFact. The names suggest the news items are collected

from the buzzfeed12 and politifact fact-checking websites13. Both datasets contain

the content and labels for the news items. For each news item, a number of social

12https://www.buzzfeed.com/badge/fact-checker
13https://www.politifact.com/

83

Chapter 4. Graph-based Deep Learning for Social Media Data Analytics

Table 4.11: Descriptive statistics for BuzzFeed and PolitiFact datasets

BuzzFeed PolitiFact

True News 91 120

Fake News 91 120

Number of users 15.257 23.865

Number of engagements 25.240 37.259

Number of publishers 9 91

engagements, which are tweets, is included. Table 4.11 shows descriptive statistics for

these fake news datasets. Following [189], we conduct experiments with 5-fold cross

validation setting; in each fold, 80% of the data is kept for training and parameter

fine-tuning, and the rest is used for testing. We report the average classification

result on the test sets over the 5 folds.

Implementation Details

The implementation consists of three phases: data pre-processing, feature extraction

and model building. The data pre-processing step is necessary because our datasets

contain plenty of tweets, which are noisy. Therefore, tweets need to be tokenized and

functional words (e.g., the) are removed. Another procedure, which is stemming, is

applied to obtain the original form of words. These procedures are performed using

the nltk library. Finally, we extract word2vec embeddings and average over the

embeddings to obtain an unique representation for each article.

We employ the Tensorflow deep learning environment to implement the proposed

model14. We re-use the code for the graph convolutional network in [103] for

classifying fake news items. All the parameters for the GCN model are the default

parameters provided by the authors of [103].

Result

We select several state-of-the-art methods for fake news detection as baseline

models, including Rhetorical Structure Theory (RST) [181], Linguistic Inquiry and

Word Count (LIWC [161]), the model proposed by Castillo et al. [20], and their

combinations. Table 4.12 shows the performance for fake news detection on the

BuzzFeed and PolitiFact datasets using our method and the baselines in terms of

accuracy. As RST and LIWC are based only on the textual feature, the performance

of these methods is limited. On the other hand, Castillo’s method employs only

features extracted from user profiles, thus it can not exploit the linguistic aspect

of fake news. Still, Castillo’s method gains improvements of approximately 9%

and 14% on BuzzFeed and PolitiFact, respectively, compared to RST and LIWC.

14https://www.tensorflow.org/

84

4.4. Conclusion

Table 4.12: Fake news classification performance of the proposed and baseline methods in terms
of accuracy score.

BuzzFeed PolitiFact

RST [181] 0.610 0.571

LIWC [161] 0.655 0.637

Castillo [20] 0.747 0.779

RST+Castillo 0.758 0.812

LIWC+Castillo 0.791 0.821

Shu et al. [189] 0.864 0.878

Our method 0.944 0.895

Combining RST or LIWC with the model of Castillo also helps increase the accuracy

to more than 75% on BuzzFeed and more than 81% on PolitiFact. The method

proposed by Shu et al. [189] makes use of multiview information, including users,

news articles, and publishers, and exploits the tri-relationship of these entities (i.e.,

the pairwise relationship between publishers and news articles, and between news

articles and social media users). As a result, this method performs better than

other baselines, achieving 86.4% on BuzzFeed and 87.8% on PolitiFact. However,

the method in [189] assumes a simple linear relationship between the representations

of news articles and labels. The proposed method, on the other hand, uses the tri-

relationship to establishes the direct connections between articles via a graph, and

leverages a non-linear two-layer GCN model to learn the mapping function between

the article representations and credibility level. As the GCN model is able to exploit

the correlation between articles directly and effectively, this eventually leads to the

best performance compared to all baseline methods.

4.4 Conclusion

In this chapter, we considered the problem of social media data analytics with two

domain-specific problems including (i) Twitter user geolocation prediction and (ii)

fake news detection. As mentioned earlier, social media entails graph structure,

namely the correlation between datapoints can be represented in form of a graph.

Therefore, we leveraged this property for the respective proposed methods. In

the first problem, we employed node2vec embeddings — a node representation

learning based on biased random walk — to extract useful feature for our multiview

deep neural network models. The node2vec embeddings are shown to contribute

remarkably to the performance of the proposed models. In the latter, we followed

the end-to-end principle, namely we leverage the representation strength of graph

convolutional neural networks (GCNs) to classify news. The GCNs are able to well

capture the ternary relationship between entities associated to news items. In both

85

Chapter 4. Graph-based Deep Learning for Social Media Data Analytics

case, structural information of the underlying graph is used effectively, resulting in

high performance compared to the existing methods.

Our works can be easily extended given the continuous advancement of graph-

based models, especially graph convolutional neural networks as seen in Chapter 3. A

future direction of our work may include devising new graph-based message passing

models for geolocating Twitter users. More recent attention models for graphs are

also promising for the problems of Twitter geolocation and fake news detection.

Last but not least, many problems involving social media data can be addressed

using graph-based deep learning models such as event detection and hate speech

recognition. We envisage that graph-based deep learning, especially graph neural

networks, will play an important role in solving these problems in the near future.

86

Chapter 5

Graph-based Deep Learning for

Analyzing Internet-of-Things Data:

Toward Smart City Applications

5.1 Introduction

Internet-of-Things (IoT) data refers to the big real-time streams of data retrieved

from a substantial quantity of heterogeneous wired or wireless sensors. As mentioned

earlier in Chapter 1, IoT devices are one of the main sources of big data. IoT

devices integrated with recent advances in IoT technology are key components for

large heterogeneous ICT systems, which can lead to more efficient use of public

urban resources, high quality ICT-enabled services for citizens while reducing

administrative operational cost, which are the goals of smart cities. The recent

advancements in data analysis techniques, especially in the areas of machine learning

and deep learning, have transformed the ICT-enabled services, enabling a wide range

of applications for smart cities.

IoT data is one type of big data, thus it inherits all properties of big data

(see Chapter 1), especially Volume and Value. Given the huge amount of the IoT

data, effectively exploiting value from the IoT data can benefit a wide range of

applications. For example, most of vehicles like cars or trucks are currently integrated

with GPS-enabled devices, which allow drivers to navigate easily on roads. The

GPS signals are sent to service providers (e.g., Google) in real-time, enabling many

useful applications such as traffic forecasting [165] or traffic prediction [184] (The

prediction here means predicting traffic flows at unmeasured locations). In addition,

it is expected that IoT data will contribute to meteorology prediction such as tem-

perature prediction [66] or flood forecasting [142]. Alternatively, IoT data collected

The material in this chapter is based on the author’s publications [47, 48, 51]

87

Chapter 5. Graph-based Deep Learning for Analyzing Internet-of-Things Data:
Toward Smart City Applications

from wearable sensors can also be used for disease prediction and analysis [147].

A plethora of applications can benefit from leveraging modern technologies in data

analytics, especially machine learning and deep learning algorithms. Still, applying

the data analysis techniques to IoT data remains challenging, given its inherent noise

and enormous volume. Furthermore, IoT data consists of time series and is inherently

different from traditional data types such as images, audio or text. Therefore, data

analysis methods need to be adapted following the specifics of such data.

IoT data often reveals the trait of spatial correlation, namely measurements are

similar in value if they are collected in the same neighborhood at the same time

instance. This spatial correlation can be well represented in form of a graph, which

is a very flexible data structure type. On the other hand, recent years have witnessed

an exploding development in deep learning on graphs. New deep learning models

for graphs have been continuously introducing with very promising results. This

motivates us to use graph-deep-learning-based methods for analysing the IoT data.

In this chapter, we focus on two specific problems of IoT data analytics, namely

traffic monitoring and air quality inference, which match our first goal of improving

the quality of big data (see Chapter 1). The traffic signals and ambient air pollutant

concentration are parameters necessary to monitor and control in smart cities. In

order to monitor these parameters, IoT sensors have been deployed in different

locations. In the first problem, sensors are installed on highways to measure average

speed of vehicles. However, noise in the data (e.g., random noise) is inevitable

given the large amount of communication and limited battery of the devices. In

order to address this problem, we formulate it as a signal denoising problem on

graphs, and we design a graph autoencoder architecture for signal denoising. In

the second problem, mobile sensors are used for monitoring the air quality. As air

quality data appears to have low spatio-temporal resolution, we aim to increase the

spatio-temporal resolution using a data-driven approach. Specifically, we formulate

this problem as matrix completion on graphs and address it by devising a novel

graph variational autoencoder model. The following sections describe in detail the

problem formulation and the architecture of these models.

The organisation of this chapter is organized as follows. In Section 5.2, we analyse

some characteristics of IoT data. Section 5.3 introduces our graph autoencoder

model for traffic signal denoising and Section 5.4 presents our work on air quality

prediction using graph variational autoencoder. Finally, we draw conclusions and

discuss some ideas on future works.

5.2 Spatio-temporal Correlation in IoT Data

IoT data is collected using IoT sensors located in different places. If the distances

between the sensors are not small, it is possible to observe the spatial correlation,

88

5.2. Spatio-temporal Correlation in IoT Data

Latitude

Longitude

Time (t) (t + 1)(t - 1)

𝐴("#$)

𝐵("#$)

𝐶("#$)

𝐷("#$)

𝐴(")

𝐵(")

𝐶(")

𝐷(")

𝐴("&$)

𝐵("&$)

𝐶("&$)

𝐷("&$)

Figure 5.1: The illustration of air quality measurements (e.g., NO2 concentration) at different time
instances. Circles in blue, red, orange and white indicate the concentration level. The measurement

at a specific location in a time instance (e.g., A(t)) is close in value with other measurements

collected at nearby locations in the same time instance (e.g., B(t), C(t). Likewise, at a specific

location, measurements sampled at close time instances are similar (e.g., A(t), A(t+1)). On the
other hand, the air pollutant concentration is affected by spatial context e.g., points of interest
(factories, parks, etc) and temporal context e.g., weather condition.

namely the measurements sampled by two nearby sensors should be similar. In

addition, IoT sensors are often used to monitor real-world parameters such as

air quality or average vehicle speed. Therefore, it is not often to see sudden

changes in the monitored parameters. For this reason, measurements collected in

neighboring time instances at the same location should be similar. We refer to this

property as temporal correlation. Furthermore, this correlation exists between the

IoT measurements, thus it is named internal correlation.

There also exists the correlation between the IoT data and external context

including spatial context (e.g., surrounding points of interest) and temporal context

(e.g., weather condition). For instance, air quality measured near a factory is likely

lower than the air quality in a park. Similarly, average speed on highways in sunny

days is normally higher than in rainy days. As this correlation exists between the

IoT measurements and the external context, it is named external correlation. The

internal and external correlations are illustrated in Figure 5.1.

In the literature, there have been many works exploiting both the internal and

external spatio-temporal correlation in IoT measurements for prediction. In this

chapter, we focus only on the internal correlation of the IoT data. In the following

sections, we present our models for two types of IoT data: vehicle speed and air

quality.

89

Chapter 5. Graph-based Deep Learning for Analyzing Internet-of-Things Data:
Toward Smart City Applications

Figure 5.2: A signal living on a graph [190]. The graph is formed by nodes (red points) and edges
(dashed lines). The height of the blue stick indicates value of the graph signal at a node. The graph
signal is permutation invariant.

5.3 Graph Signal Denoising using Graph Autoen-

coders: Application in Traffic Monitoring

Smart cities leverage a huge number of IoT sensors to measure multiple param-

eters in real-time. The measured data is collected and analyzed, enabling many

applications and services. Traffic monitoring is one important application in smart

cities where the average speed of vehicles is regularly monitored. The average speed

is then analyzed to gain insights about traffic condition. For example, based on

average speed of vehicles, traffic congestion events can be identified. The traffic flow

information is also helpful for policymakers in decisions such as building extra roads.

Traffic data retrieved from IoT sensors inherently contain noise. As noisy signals

appear in many contexts due to the nature of data collection processes — especially

in the current data deluge era when the volume of data is growing exponentially

over the years — signal denoising has become greatly necessary. Although signal

denoising is a classical research topic, existing works focus mainly on regular-

structured signals, such as time series, images and audio, while mostly ignoring

irregular-structured signals. Irregular-structured signals are normally represented in

the form of graphs. Networks of users on social media platforms, location-based

measurements of vehicle speed in traffic monitoring systems or location-based air

quality measurements are all examples of such type of signals where the underlying

graphs are formed using social media users or the network of sensors. In this section,

we focus on the graph signal denoising problem, and we present a method to address

this problem using a novel graph autoencoder model.

Problem Formulation

Let G = (V,E) be an undirected graph with V the set of nodes (a.k.a., vertices) and

E the set of edges. Let the number of nodes be denoted by N = |V | and A ∈ RN×N

90

5.3. Graph Signal Denoising using Graph Autoencoders: Application in Traffic
Monitoring

𝐿!!

𝐿""

𝐿!"

𝐿"!𝑁"

𝑁!

𝑁" 𝑁!

Figure 5.3: The arrangement of Laplacian matrices for Kron reduction. The retained nodes are
arranged in the area Ltt while the rest is removed.

be the adjacency matrix of G. A graph signal defined on graph G is a vector u ∈ RN

such that entry ui is the value obtained from the i-th node. Figure 5.2 shows an

example of a graph signal. A noisy graph signal ũ ∈ RN , usually observed in the

graph G, has the following relationship with the original signal x:

ũ = u + δ, (5.1)

where δ is the vector containing noise. Graph signal denoising is the task of

reconstructing the original graph signal u from the observed noisy signal ũ, given

that the structure of the underlying graph is known (e.g., A is known).

5.3.1 The Proposed Method

In this section, we present our method for graph signal denoising using a graph

autoencoder. Our model leverages the propagation mechanism in GCN [103]. In

addition, we propose a global pooling technique, named K-pooling, based on Kron

reduction operation [52]. First, we show how Kron reduction is used for pooling.

Subsequently, we present our model with the K-pooling integrated.

Kron Reduction

Graphs are involved in many problems thanks to their useful structural information.

However, as real-world applications usually involve large graphs (e.g, social network

graphs) leading to prohibited computational complexity, the use of large graphs is

limited. This renders the need to reduce the number of nodes in a graph while still

retaining as much as possible its properties — a problem is known as graph reduction.

Graph sampling is a common approach in graph reduction, leveraging some sorts

of probability distributions [120]. Nevertheless, this approach does not guarantee

91

Chapter 5. Graph-based Deep Learning for Analyzing Internet-of-Things Data:
Toward Smart City Applications

deterministic results as it relies on random sampling. Kron reduction, widely used in

electrical network analysis, is a graph reduction technique that does not suffer from

this problem [52]. Furthermore, Kron reduction is known to maintain the harmonic

solution of the total variation (a.k.a., quadratic form) of graphs [206] (see Section 3.6,

Chapter 3). The preserving of the the harmonic solution is important as it reflects

the smoothness level of graph signals.

Denote by D the degree matrix of the graph G, D is a diagonal matrix with

Dii =
(∑N

j=1 Aij

)
. The unnormalized Laplacian matrix of G is given by L = D−A.

G can be fully represented using either its Laplacian matrix or adjacency matrix. As

matrix L is specified with the orders of nodes, let us consider a node ordering l(V)

that produces a fixed order for the nodes of V . Our task is to retain Nt < N nodes

after reduction (equivalently, we want to remove Ns nodes with Ns = N −Nt). The

Kron reduction method achieves this by (i) ordering the nodes and re-arranging

the rows and columns of L according to l(V); (ii) use the last Nt nodes to form

the reduced graph; and (iii) calculating the new Laplacian matrix representing the

connections in the reduced graph. Denote by Lss (of size Ns × Ns), Lst (of size

Ns ×Nt), Lts (of size Nt ×Ns) and Ltt (of size Nt ×Nt), respectively, the upper-

left, upper-right, bottom-left and bottom right sub-matrices of L. This arrangement

is illustrated in Figure 5.3. The Laplacian matrix of the reduced graph is given by:

Lr = Ltt − Lts × L−1
ss × Lst. (5.2)

It is easy to see the new Laplacian matrix has the size Nt × Nt. Using the new

Laplacian matrix, the corresponding adjacency matrix Ar = Dr − Lr can be

reconstructed (Dr is the diagonal matrix formed by the diagonal of Lr), describing

the structure of the reduced graph with Nt nodes. Even though the nodes in this

graph are reserved from the original graph, the edges of the reduced graph are not

the same with the original graph, namely the new edges are created following the

new adjacency matrix Ar. Therefore, the structure of the reduced graph differs from

that in the original one.

Graph Autoencoder with Kron-reduction-based Pooling

Our graph autoencoder model for graph signal denoising is illustrated in Figure 5.4.

The model consists of two components: an encoder and a decoder. The encoder

contains one graph convolutional layer (hereafter called GCONV layer), followed by

one pooling layer (i.e., denoted by K-pooling block). Similar to standard pooling

operations (e.g., max pooling), the K-pooling helps address the over-fitting issue

by reducing the dimensionality of graph signals while maintaining their smoothness

constraint. The decoder is composed of an unpooling layer followed by a GCONV

layer. The unpooling layer is needed because we want to reconstruct graph signals

with the same dimensionality as the original signals. In between them, there

92

5.3. Graph Signal Denoising using Graph Autoencoders: Application in Traffic
Monitoring

Kron
Pooling

FC

Unpooling

GCONV GCONV

𝑼": Noisy signal

𝒁

𝒁𝒑 𝒁𝒍

𝒁𝒖
𝑼" : Recovered signal

Figure 5.4: The proposed graph autoencoder for signal denoising [47]. A “GCONV” block stands
for a graph convolutional layer [103]; a “Kron pooling” block stands for a K-pooling layer which
was designed following the Kron reduction method; a “FC” block stands for a fully-connected layer.
The color of a node indicates the value of the graph signal at the node. As pooling and unpooling
operations do not change the signal’s values, the colors of nodes are the same before and after these
operations. The reconstructed signal has colors close to the colors of the input noisy signal, but
they are not the same as the noise has been eliminated.

is a fully-connected (FC) layer. In the following, we first describe the layer-wise

propagation rule of the GCONV layer and the pooling technique used in our model.

In order to exploit the structural information of the underlying graph, we adopt

the propagation rule in graph convolutional neural network (GCN) proposed by Kipf

et al. [103] for our model. The propagation rule is summarized in a GCONV layer,

which is expressed by the following equation:

H(l+1) = fGCN

(
D̃−

1
2 ÃD̃−

1
2 H(l)W(l)

)
= fGCN

(
ÂH(l)W(l)

)
, (5.3)

where Ã = A + IN , fGCN denotes a non-linear activation function, Ã is a diagonal

matrix with D̃ii =
∑N
j=1 Ãij , H(l) ∈ RN×K is the input of the layer l-th, and

W(l) ∈ RK×F is the matrix containing the parameters of the layer.

The propagation rule in (5.3) can be seen as a message passing process. Consider-

ing a node vi, this process consists of two steps. In the first step, the features of nodes

in the neighborhood of vi are aggregated via Ĥ(l) = ÂH(l). In the second step, the

elements of the feature vector of vi are linearly transformed by multiplying Ĥ(l) with

the weight matrix W(l). Then, the output is activated using the non-linear function

fGCN. By stacking multiple GCONV layers, vi can receive the messages from other

nodes which are not directly connected to vi. Thus, this mechanism allows learning

good representations of the nodes by leveraging their local neighborhood.

Similar to the standard max-pooling or mean-pooling layers used in CNNs,

the pooling layer in Figure 5.4 is used to reduce the spatial dimensions of the

93

Chapter 5. Graph-based Deep Learning for Analyzing Internet-of-Things Data:
Toward Smart City Applications

intermediate feature maps. However, our pooling layer is different from these

standard pooling layers in the sense that it is based on Kron reduction operator [52],

thus it is named K-pooling. Furthermore, the K-pooling is global as it does not

rely on neighboring nodes of the underlying graph. The K-pooling operates as

follows. Firstly, we pre-compute the reduced graph using the Kron reduction method

(see (5.2)) with a given reduction rate r ∈ (0, 1). The nodes of the original graph that

are retained in the reduced graph are called terminals; the number of the terminals

is Nt = b(1 − r)Nc. We select the terminals using a node ordering such as the

degree or rank of nodes. The pooling layer in our model keeps only the terminals

and removes the remaining nodes from the original graph. In addition, the indices

of the terminals are kept for the use in the decoder. As our model is used for

reconstructing the clean graph signals, the output of the model must have the same

dimensionality as the input. As such, we use an unpooling layer to enlarge a pooled

signal. Specifically, the unpooling layer scatters its input activations such that the

output of the unpooling layer (indicated by Zu) has the same number of entries

with the activations before pooling, indicated by Z in Figure 5.4. This is achieved

by using the indices of the terminals during the previous pooling step. Nodes that

are not terminals are filled with zero vectors.

In order to use the proposed model for denoising graph signals ũ ∈ RN , we adopt

a batch setting, namely we organize K graph signals into a matrix Ũ ∈ RN×K .

Each column in the matrix Ũ corresponds to a graph signal, whereas each row of Ũ

contains different measurements at a node of the graph. The matrix Ũ becomes

the input of the proposed graph convolutional autoencoder. The following set of

equations shows how our model works:

Z = fGCN

(
ÂŨWe

)
, (5.4)

Zp = K-pooling(Z), (5.5)

Zl = fFC(ZpWfc), (5.6)

Zu = unpooling(Zl), (5.7)

Û = fGCN

(
ÂZuWd

)
. (5.8)

In (5.4), (5.6), (5.8), We, Wfc and Wd are weight matrices, and fFC(·) is the

activation function of the middle fully connected layer. The output matrix Û

contains the reconstructed signals from the observed signals Ũ.

In order to train the model, we use the mean absolute error (MAE). Denote

the ground-truth signals by U, the MAE is given by L(U; We,Wfc,Wd) =
1
|Ω|
∑

(i,j)∈Ω |Ûij − Uij |, Ω is the index set of U, as the loss function since it has

shown good performance in reconstruction and denoising [48, 63]. We minimize

the loss with mini-batch stochastic gradient descent using the Adam optimization

algorithm [101].

94

5.3. Graph Signal Denoising using Graph Autoencoders: Application in Traffic
Monitoring

Table 5.1: The description of the considered dataset. mph stands for miles per hour.

milepost 323

Min speed 0.74

Mean speed 56.57

Max speed 158.19

Speed unit miles per hour (mph)

Table 5.2: Denoising results on Seattle Loop dataset. Five levels of noise are considered, from
σnoise = 0.5 to σnoise = 5.0. GAE-2-GCN means a graph autoencoder model with two GCONV
layers. The results are slightly different from [47] as 10-fold cross validation is considered.

σnoise = 0.5 σnoise = 1.0 σnoise = 2.0 σnoise = 5.0
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Gaussian
Filter

29.39 ±
0.26

31.16 ±
0.19

29.59 ±
0.21

33.43 ±
0.17

33.83 ±
0.39

41.63 ±
0.44

61.45 ±
0.39

78.22 ±
0.51

Graph
Filter

8.96 ±
0.11

12.00 ±
0.22

9.00 ±
0.12

12.16 ±
0.22

9.46 ±
0.12

12.88 ±
0.21

13.36 ±
0.12

17.38 ±
0.16

GAE-2-
GCN

7.06 ±
0.32

10.97 ±
0.24

7.07 ±
0.29

10.98 ±
0.25

7.14 ±
0.26

11.04 ±
0.26

7.98 ±
0.41

11.30 ±
0.31

Ours
6.51 ±
0.22

10.43 ±
0.35

6.64 ±
0.23

10.41 ±
0.33

6.96 ±
0.25

10.43 ±
0.30

7.39 ±
0.23

10.54 ±
0.27

5.3.2 Experimental Study

Dataset

In order to experimentally evaluate the proposed method, we employ a popular real-

world traffic dataset, i.e., the Seattle Loop dataset, for our experiments. The dataset,

collected during the year of 2015., contains the average speed of vehicles measured

using inductive loop detectors in freeways in the Seattle area, United States [39].

The dataset covers three freeways I-5, I-405, I-90, and SR-520 of Seattle. In total,

the dataset has roughly 105K datapoints; each datapoint represents an aggregation

of vehicle speed during T minutes at a milepost on the freeways. We select T = 5

minutes for our experiments. There are 323 mileposts, which are considered the

nodes of a traffic graph. Hence, a graph signal measuring vehicle speed is a vector

with 323 entries. The connections (e.k.a., edges) between nodes, provided by the

dataset, are made based on the nodes’ great-circle (geodesic) distance. In this work,

only the unweighted graph is considered, namely the corresponding adjacency matrix

contains only binary entries. We extract the measurements for 10 days from January

01 until January 10, 2015, resulting in 2880 graph signal samples. We consider 10-fold

cross validation setting, namely that for each fold the samples are shuffled and split

such that 90% of the samples for training and the rest for testing. We summarize

some details of the considered dataset in Table 5.1.

95

Chapter 5. Graph-based Deep Learning for Analyzing Internet-of-Things Data:
Toward Smart City Applications

Experimental Settings

We normalize each datapoint in dataset to have values in the range [0, 1]. To simulate

the noisy measurements, we add Gaussian noise with µnoise = 0.5 and different

standard deviations σnoise ∈ {0.5, 1.0, 2.0, 5.0}. This simulation lets us evaluate how

the models perform with respect to different signal-to-noise ratios.

We compare our model against strong baselines, including, a graph convolutional

autoencoder of two GCONV layers without K-pooling, which we refer to as GAE-2-

GCN, and several classical signal filtering methods, including an 1D Gaussian filter

and a graph spectral filter [190]. We use the root mean squared error (RMSE) and

mean absolute error (MAE) to measure the performance of the considered models.

It is worth pointing out that although the data is always normalized before applying

the filters or training the models, the output is re-scaled to the original value ranges,

thus, the evaluation metrics are calculated using the original and the reconstructed

re-scaled signals.

Parameter Settings

Our model and the GAE-2-GCN are implemented using Tensorflow1. Both models

use two GCONV layers with the activation function fGCN = ReLU. Each GCONV

layer has 16 channels. The fully-connected layer (FC layer) has a size of 8 hidden

units. The reduction rate in the pooling layer is set to r = 0.2, meaning that we

keep 80% of the nodes after pooling. We use the degrees of the nodes, ordered

ascendingly for the Kron reduction method in the K-pooling layer. In addition, we

employ dropout for regularization [195] with a dropout rate of 0.3. We employ

a small learning rate of 0.001 with the number of epochs set to 100. It is worth

mentioning that though we only train the model for 100 epochs, it allows us to

achieve stable results. The GAE-2-GCN model uses the same parameters as the

proposed model, except that the pooling, unpooling and FC layers are not present.

We implement the 1D Gaussian filter by leveraging scipy2. The 1D Gaussian

filter is characterized by the standard deviation of the Gaussian kernel σkernel. We

implement the graph spectral filter using pygsp3 [43]. The graph spectral filter is

parameterized by a low-pass function, e.g., f(x) = 1
1+τx . For these filters, we have

tried many different parameters and reported the best result, which corresponds to

σkernel = 5 and τ = 3.

1https://www.tensorflow.org
2https://docs.scipy.org/doc/scipy/reference/generated/

scipy.ndimage.gaussian filter1d.html
3https://pygsp.readthedocs.io/en/stable/reference/filters.html

96

5.4. Hyperlocal Air Pollution Inference with Graph Variational Autoencoders

Results

The results obtained with the proposed model and reference methods are shown in

Table 5.2. As can be seen, the classical Gaussian filter does not perform well under

different noise conditions. This can be explained by the fact that this filter does

not consider the spatial correlation of the graph signals. On the other hand, the

graph spectral filter, despite being simple, yields better performance by leveraging

structural information, with an RMSE between 11.84 and 16.28 and a MAE in

[8.79, 12.53]. Similarly, the GAE-2-GCN model is able to exploit the structure

of the underlying graph. Furthermore, the GAE-2-GCN is capable of learning

latent representation of data, leading to better performance compared to the graph

spectral filter. Noticeably, the proposed model consistently outperforms all the

considered baselines, achieving MAE and RMSE scores in the ranges (6.51, 7.39)

and (10.43, 10.54), respectively. Moreover, the results show that the proposed model

performs well under different noise levels: the MAE and RMSE values change

marginally when the standard deviation of noise increases. As the proposed model

differs from the GAE-2-GCN model mainly in the use of the K-pooling and unpool

layers, the results justify the positive effect brought by the proposed Kron-reduction-

based pooling method.

5.4 Hyperlocal Air Pollution Inference with Graph

Variational Autoencoders

Air pollution is among the most serious threats for the human health and the envi-

ronment. Traditionally, fixed monitoring stations have been deployed to measure the

concentration of air pollutants. Given the high cost of installation and maintenance,

the number of such stations is limited. Although fixed stations are stable and can

collect measurements with high temporal resolution, their spatial resolution is very

low; hence, there is a need to spatially infer the concentration of air pollutants for

places without a monitoring station. Recent advances in sensors, IoT platforms,

and mobile communications enable deploying low-cost mobile monitoring stations,

e.g., by mounting sensors on vehicles. Examples include the air quality monitoring

system using the public transport network in Zurich [77], the system using Google

street-view cars in Oakland, CA [4], and imec’s City-of-Things platform that uses a

routine service fleet i.e., postal vans [112]. Deploying mobile stations increases the

spatial resolution of air quality measurements; however, their temporal resolution

per location is low since the vehicles are moving. In addition, there are still locations

not covered by the vehicles. This renders computationally inferring missing air

quality measurements across the spatial and temporal dimensions an important

problem. We refer to this problem as air quality inference hereinafter. It is easy to

97

Chapter 5. Graph-based Deep Learning for Analyzing Internet-of-Things Data:
Toward Smart City Applications

see that addressing this problem matches the first goal of “Improving Quality of Big

Data” as stated in Chapter 1.

We leverage the City-of-Things platform from imec [112] to retrieve street-level

air quality data measured using mobile stations in Antwerp, Belgium. Given the

available data, we infer the air quality in unmeasured locations across time and

space. We address the air quality inference from a data-driven perspective, and

formulate it as a graph-based matrix completion problem. Specifically, we exploit

the topology of Antwerp road system and propose a novel deep learning model based

on variational graph autoencoders; we refer to our model as AVGAE. The model

captures effectively the spatio-temporal dependencies in the measurements, without

using other types of data, such as traffic or weather, apart from the street-network

topology. Furthermore, an extension of the AVGAE model following the multiview

strategy is carried out. The multiview model, termed MAVGAE, can handle multiple

pollutants at one pass, leading to improved inference performance. Experiments on

real-world data collected from the City-of-Things platform show that our method

outperforms various reference models.

Our main contributions are fourfold: (i) we formulate air quality inference

as a graph-based matrix completion problem and propose a variational graph

autoencoder for accurate air quality inference termed AVGAE; (ii) the proposed

model effectively incorporates the temporal and spatial correlations via a temporal

smoothness constraint and graph convolutional operations; (iii) we extend the

AVGAE model following a multiview approach taking as input multiple pollutants.

This extension enables to capture the cross-correlation between pollutants; (iv)

we carry out comprehensive experiments on real-world datasets to evaluate the

proposed model showing its superior performance compared to existing models.

5.4.1 The Proposed Method

In this section, the details of the proposed method are presented. First, we show how

the data is pre-processed. Second, the air quality problem is formulated as matrix

completion on graphs. Lastly, the AVGAE and its extended version are described.

Data Preprocessing and Aggregation

A first preprocessing step is to remove data outliers. We take into account the

minimum and maximum longitude and latitude values referred to the city of Antwerp

and remove all the measurements that lie outside the considered bound. We also

consider the range of valid values of the measured air pollutants, namely (0 - 200)

µg m−3 for particulate matter and nitrogen dioxide4,5, and discard any measurement

4https://www3.epa.gov/airnow/no2.pdf
5https://ec.europa.eu/environment/air/quality/standards.htm

98

5.4. Hyperlocal Air Pollution Inference with Graph Variational Autoencoders

outside this range. Furthermore, an additional step is considered to remove outliers

relying on Interquartile Range (IQR). The IQR is a measure of statistical dispersion

and is calculated as the difference between the 75th and 25th percentiles. It is

represented by the formula IQR = Q3−Q1. Measurements with value smaller then

vmin = Q1− 1.5IQR or larger than vmax = Q3 + 1.5IQR are then removed.

As the time and location associated to a measurement are continuous, it is

convenient to aggregate the measurements at discrete time instances and locations.

We consider a time interval of interest and divide it into uniform slots of duration

τ (e.g., one hour), obtaining a set of T discrete timeslots {t1, t2, . . . , tT }. For a

geographical area inside the considered bounding box, we divide the road network

into N points {p1, p2, . . . , pN}. In a given timeslot tj , we gather all the measurements

within a pre-defined geographical distance r from a given location pi. We consider

the median-value of these measurements as the measurement at the location pi and

the timeslot tj . Hence, the aggregation across space is non-uniform and is adapted

to the considered locations on the road network. The locations {p1, p2, . . . , pN}
and the time interval τ determine the spatial and temporal resolution. We will

see later in Section 5.4.2 how the spatio-temporal resolution of the data impacts the

performance of the proposed models.

Graph Construction

We obtain the set of N points {p1, p2, . . . , pN} as follows. First, we extract the road

network of the city of interest from OpenMapTiles6. The road network contains

more than 30, 000 pre-defined points, corresponding to a high spatial resolution. It

is worth mentioning that all these points lie on roads. Then, we create a grid and

subdivide the considered bounding box of the city into small square cells; the size

of a cell is denoted by ∆ and it is a parameter in our method. Among the points

belonging to the same cell, we select the point having the smallest distance to the

center of the cell. It is easy to see that the smaller the value of ∆, the higher the

number of selected points is, and vice versa. Therefore, the number of selected points

can be increased or reduced according to ∆ depending the desired spatial resolution.

For example, when the computational capacity and the memory are limited, we can

reduce the spatial resolution accordingly.

We construct an undirected weighted graph using the points mentioned above as

follows. We compute the geodesic distance among the N corresponding discretized

locations on the road network. Two nodes are connected if the geodesic distance

between them is smaller than a predefined threshold δ, or if they belong to the same

road segment. The weight of a connection is set equal to the inverse of the geodesic

distance computed by the Haversine formula [16].

6https://openmaptiles.com/downloads/europe/belgium/antwerp/

99

Chapter 5. Graph-based Deep Learning for Analyzing Internet-of-Things Data:
Toward Smart City Applications

Air Quality Inference Problem Formulation

We arrange the discretized measurements obtained from the above aggregation

process into a measurement matrix X ∈ RN×T . An entry Xij , i = 1, . . . , N ,

j = 1, . . . , T , corresponds to the measurement at the location pi and the timeslot

tj . X is a highly incomplete matrix; we denote with Ω the set of indices of known

entries, that is, (i, j) ∈ Ω if Xij is known. Our task is to predict the unknown entries

using the known measurements (known entries); therefore, we need to solve a highly

ill-posed matrix completion problem [41]. To obtain a unique solution, additional

constraints on the matrix structure need to be defined.

A matrix completion solution for air pollution data should take into account

the spatial correlation between the matrix entries. Since each row of the matrix

corresponds to a measured location, rows corresponding to nearby locations should

have similar entries. In order to capture the spatial correlation of measurement

points, we rely on the graph of discretized locations extracted from the road network

described earlier. Using this graph, the estimation of the unknown entries reduces

to a matrix completion on graphs problem [96, 11].

In the following section, we propose two novel models for air quality inference

that rely on a novel deep learning solution for matrix completion on graphs. The

proposed solution employs variational graph autoencoders (VGAEs) [104]. Our first

model, coined AVGAE (Air pollution VGAE), estimates the unknown values of

a single air pollutant. We use a VGAE to incorporate the spatial correlation of

the data (correlation among the rows of X), whereas the temporal correlation is

captured with the introduction of an appropriate term in the training objective. Our

second model is an extension of the proposed AVGAE to multiple correlated signals.

The model, coined MAVGAE (Multi-AVGAE), estimates the values of multiple

pollutants by performing fusion of air pollution information. VGAEs have been

used for link prediction in [104]; however, the generative process and thus the cor-

responding architecture of the VGAE in [104] is different than ours since the model

is designed to estimate the weights of the adjacency matrix. Matrix completion, in

particular collaborative filtering, has been addressed with variational autoencoders

(VAEs) [102] in [126], observations are assumed to follow a discrete multinomial

distribution. In contrast to our work, the VAE model in [126] does not follow a

graph-based formulation and can not handle continuous observations. Background

information about variational autoencoders can be found in Section 2.3.5, Chapter 2.

Below, a brief description of VGAEs is presented.

Variational Graph Autoencoders

Variational graph autoencoders (VGAEs) [104] adhere to the VAE concept intro-

duced in Section 2.3.5 and utilize graph convolutional layers (GCONV) to exploit the

structural information of the underlying graph. Let G = (V, E) be a graph consisting

100

5.4. Hyperlocal Air Pollution Inference with Graph Variational Autoencoders

𝒁	~	𝚴(𝝁, 𝝈)

203.9 11.5

18.9

28.9 30.6

99.6 45.9

105.2

4.38 51.3

4.39 52.1

4.18 52.6

4.10 52.3

4.25 51.9

4.41 51.5

𝒇𝑮𝑪𝑵 𝒇𝑮𝑪𝑵…

𝒇𝑮𝑪𝑵 𝒇𝑮𝑪𝑵…

𝒇𝑮𝑪𝑵 𝒇𝑮𝑪𝑵
…

203.4 198.0 159 11.5

10.5 14.9 18.6 25.0

30.1 21.2 39.6 30.7

55.6 59.2 50.3 48.9

99.7 78.9 62.7 45.8

99.2 105.3 81.9 118.0

DecoderEncoder𝐗 𝐗/𝐒

𝝁

𝝈

Figure 5.5: The proposed variational graph autoencoder architecture for air quality inference
(AVGAE). The input of AVGAE consists of the incomplete observation matrix X of an air pollutant
and the corresponding matrix of geocoordinates S. The light gray row in X indicates a location
without observations across time, dark gray cells represent unmeasured locations at a given time
instance, and the entries with a red font are estimations of known entries on which we evaluate the
loss function. The function blocks fGCN represent GCN layers. The encoder outputs the parameters
µ, σ of a Gaussian distribution. The output matrix X̃ contains approximations of the observed
entries and the inferred unobserved entries.

of N = |V| nodes, with an adjacency matrix A ∈ RN×N . Assume that the node

features of G are described by a T -dimensional random vector xn, conditioned by

an M -dimensional latent variable zn, n = 1, 2, . . . , N . Let X be an N × T matrix

summarizing the node features, and Z an N × M matrix containing the latent

variables. A simple variational inference model on the latent variables is given by

q(Z|X,A) =

N∏
n=1

q(zn|X,A), (5.9)

with q(zn|X,A) = N
(
µn, σn

)
, n = 1, . . . , N [104]. We obtain a matrix µ containing

the mean vectors µn using a graph convolutional layer, that is, µ = fGCN(X), with

fGCN defined as follows [103]:

fGCN(X,A) = η
(
D̃−

1
2 ÃD̃−

1
2 XW

)
, (5.10)

where Ã = A + IN , D̃ is a diagonal N × N matrix with D̃ii =
∑
j Ãij , and

W ∈ RT×D is a trainable weight matrix; D is the GCN layer’s dimensionality, and

η indicates a nonlinear function. By stacking multiple GCN layers, more complex

functions can be constructed. Similarly, we can obtain the matrix σ containing σn,

n = 1, . . . , N .

Single Air Quality Inference Model

Let us consider a sample at the i-th node (i.e., a measurement vector xi ∈ RT).

We can assume that the sample is drawn from a distribution, conditioned by latent

variables z ∈ RM (i.e., p(x|z)). We can think of a generative process where the

latent variables follow a prior distribution (i.e., Gaussian); the distribution is used

to generate zi, which can be transformed into the observed space (i.e., xi). By

101

Chapter 5. Graph-based Deep Learning for Analyzing Internet-of-Things Data:
Toward Smart City Applications

summarizing all the random variables in an N×T matrix X and the latent variables

in an N ×M matrix Z, we can assume that X follows a distribution conditioned by

Z, described by p(X|Z). By considering the variational approximation q(Z|X), Z can

be interpreted as a latent representation of the observed X. Therefore, q(Z|X) can

be considered as a probabilistic encoder, and the generative process characterized

by p(X|Z) as a probabilistic decoder [102].

Based on this probabilistic model, we design a neural network model that

predicts the concentration of an individual air pollutant from a few observations and

some additional geographical information. The model accepts as input the N × T
measurement matrix X, and an N × 2 matrix S containing the geocoordinates of

the considered locations p1, p2, . . . , pN . X and S are concatenated horizontally to

formulate a single input matrix. By incorporating geographical information into

the model, we aim at exploiting the correlation between the measurements and the

geographical locations.

To estimate the unknown values X̃, the model needs to learn the latent repre-

sentation Z of the input data, and use Z to generate X̃. We assume that p(Z) =

N (0, IN) and q(Z|X,S,A) = N (µ, σ); A denotes the weighted adjacency matrix of

the considered graph. The model needs to learn the distribution parameters µ, σ,

as well as the generative process that produces X̃. The architecture of the proposed

design, which we refer to as AVGAE, is depicted in Figure 5.5. We design two

separate neural network branches to obtain µ and σ, that is, µ = fµ(X,S,A,Θ1)

and σ = fσ(X,S,A,Θ2), parameterized by Θ1 and Θ2, respectively. In order to

incorporate graph information into the model, fµ and fσ are realized by stacking

GCONV layers proposed in [103]. Different activation functions can be chosen for

fµ, fσ (see Section 5.4.2 for the details of the design choices and the hyperparameter

selection). The generative process is described by another stack of GCONV function

blocks, parameterized by Φ. The proposed design is described by the following set

of equations:

µ = GCNµ(X,S,A,Θ1), (5.11)

σ = GCNσ(X,S,A,Θ2), (5.12)

Z ∼ N (µ, σ), (5.13)

X̃ = GCNZ(Z,A,Φ). (5.14)

All the parameters Θ1, Θ2, and Φ are learned from data.

The objective function employed to train our model is defined as follows. We use

the mean absolute error (MAE) as reconstruction loss, regularized by a Kullback-

Leibler (KL) divergence term borrowed from (2.14). To capture the temporal

dependency between measurements, we employ an additional smoothness constraint:

given an entry Xi,j , we define a temporal neighbourhood T (i, j) of length wT

102

5.4. Hyperlocal Air Pollution Inference with Graph Variational Autoencoders

with respect to the temporal dimension, and constrain the values belonging to this

neighbourhood to be similar. The mathematical expression of the proposed objective

is given by

LAVGAE(X,Θ1,Θ2,Φ) =
1

|Ω|
∑

(i,j)∈Ω

|X̃ij −Xij |+ βD
[
q(Z|X,S,A)‖p(Z)

]
+ γ

∑
(i,j)

∑
k∈T (i,j)

e−|j−k|(X̃ij − X̃i,k)2, (5.15)

where β and γ are positive tuning parameters; wT is fine-tuned experimentally.

The model parameters Θ1,Θ2,Φ are optimized over the known entries indi-

cated by Ω. We minimize the objective function with the optimization algorithm

Adam [101], considering the reparameterization technique proposed in [102]. We also

leverage dropout regularization to mitigate over-fitting [195]. Even though MAE

is not everywhere differentiable, we find that using its sub-gradient is sufficient

for optimization with gradient descent. The training procedure is described in

Algorithm 5.

It is worth mentioning that our model is capable of inferring values at locations

that are not measured by vehicles, since it can capture the spatial correlation

between the unobserved and observed locations through their geocoordinates and

the road-network topology. The unobserved locations are illustrated by an empty

row in matrix X in Figure 5.5.

Multiview AVGAE

The second model proposed in this paper enables the joint estimation of multiple air

pollutants. We assume that there exists a correlation among different pollutants, and

design a model that performs fusion of air pollution information. The model takes

as input incomplete measurement matrices X(k), k = 1, 2, . . . ,K, of K pollutants,

computes a latent representation Z(k) for each pollutant using an AVGAE encoder,

and fuses the information of the different encoders at a shared hidden layer. The

shared layer is obtained as the concatenation of the individual latent representations

Z(k), k = 1, . . . ,K. The concatenation of intermediate representations is one of the

most common fusing strategies used to learn a compact set of latent random variables

representing a distribution over the observed multiview data [197]. The concatena-

tion layer is followed by K separate decoders, one for each pollutant, designed as in

AVGAE. The model outputs the complete matrices X̃(k), k = 1, 2, . . . ,K. We refer

to this model as Multi-AVGAE (MAVGAE). The proposed architecture is shown

in Figure 5.6.

MAVGAE is trained using an objective function formulated as a linear combina-

tion of the objective functions used to train individual AVGAE models for different

103

Chapter 5. Graph-based Deep Learning for Analyzing Internet-of-Things Data:
Toward Smart City Applications

Measurement
Matrix 𝟏 Encoder 𝟏 Decoder 1

Reconstructed
Measurement

Matrix 𝟏

Measurement
Matrix 𝒌

…

Encoder 𝒌

Concatenation

Decoder 𝒌
Reconstructed
Measurement

Matrix 𝒌

…

(lat, lng)
(lat, lng)

#𝑿(𝟏)

#𝑿(𝒌)

𝒁(𝟏)~𝓝(𝝁𝟏, 𝝈𝟏)

𝒁(𝒌)~𝓝(𝝁𝒌, 𝝈𝒌)

𝑿(𝟏) 𝑺

𝑿(𝒌) 𝑺

Figure 5.6: The proposed MAVGAE model is an extended graph variational autoencoder with

multiple inputs. X(k) denotes the incomplete observation matrix of the k-th air pollutant, and S
is the matrix of the geocoordinates.

air pollutants, that is,

L(X,Θ1,Θ2,Φ) =
1

K

K∑
k=1

LAVGAE(X(k),Θ
(k)
1 ,Θ

(k)
2 ,Φ(k)), (5.16)

where Θ1 denotes the set of parameters {Θ(k)
1 }Kk=1 of the K µ-branches of the

model, and Θ2 and Φ are defined accordingly; X = {X(k)}Kk=1 is the set of the

input measurement matrices.

5.4.2 Experimental Study

The Datasets

We use the measurements obtained during April 2019 from Antwerp city in Belgium

for three air pollutants, that is, NO2, PM2.5 and PM10. As described before, steps

for data preprocessing and aggregation are needed. We utilize the map simplification

procedure described at the beginning of this section to reduce the number of

considered locations to make the computation feasible. We use different settings

to obtain datasets with different spatial and temporal resolution. Specifically, by

setting ∆ = 50 m and ∆ = 30 m, we obtain N = 4948 and N = 8166 discrete

locations, respectively. We also set τ = 1 hour and τ = 30 min to obtain T = 720

and T = 1440 discrete timeslots, respectively, for a time period equal to 30 days.

Using all the possible combinations of the above settings and a radius r = 100 m,

we perform the aggregation step, which results in the following four datasets: (i) a

standard spatio-temporal resolution (SSTR) dataset with N = 4948 and T = 720,

(ii) a high spatial resolution (HSR) dataset with N = 8166 and T = 720, (iii) a

104

5.4. Hyperlocal Air Pollution Inference with Graph Variational Autoencoders

Algorithm 5: Training AVGAE.

input: Measurement matrix X ∈ RN×T , coordinates matrix S ∈ SN×2,
normalized adjacency matrix Â = D̃−

1
2 ÃD̃−

1
2 , parameters

Θ1,Θ1,Φ, temporal window ωτ , hyper-parameters β, γ, learning
rate α, stopping condition C, set of known indices Ω.

1 initialization: Randomly initialize Θ1,Θ2,Φ ;
2 repeat
3 Procedure Forward Computation

4 X̃← forward(Θ1,Θ2; Ã,X) ;

5 L(Θ1,Θ2,Φ)← 1
|Ω|
∑

(i,j)∈Ω |X̃ij −Xij |+ βD
[
q(Z|X,S,A)‖p(Z)

]
+

γ
∑

(i,j)

∑
k∈T (i,j) e

−|j−k|(X̃ij − X̃i,k)2 ;

6 Procedure Backward Computation
7

∂L
∂Θ1

, ∂L
∂Θ2

, ∂L∂Φ ← backward(L,Θ1,Θ2,Φ) ;

8 Procedure Update
9 Θ1 ← update(α,Θ1,

∂L
∂Θ1

) ;

10 Θ2 ← update(α,Θ2,
∂L
∂Θ2

) ;

11 Φ← update(α,Φ, ∂L∂Φ) ;

12 until C is met ;

high temporal resolution (HTR) dataset with N = 4948 and T = 1440, and (iv) a

high spatio-temporal resolution (HSTR) dataset with N = 8166 and T = 1440. The

processed datasets, corresponding to the four spatio-temporal resolution settings,

have been published on GitHub7.

Descriptions of the generated datasets are given in Tables 5.3 and 5.4. Table 5.3

includes some statistics concerning the number of measured data at the considered

locations and timeslots. It is worth mentioning that the sparsity of data is high

(the percentage of non-zero entries over total entries ranges from 0.016% to 0.355%)

and proportional to the spatio-temporal resolution. Furthermore, recall that the

unmeasured locations correspond to empty rows in the incomplete data matrix (see

Section 5.4.1).

The graph associated with the datasets is created as follows. We use the N

considered discrete locations as the nodes of the graph. Each node is characterized

by an incomplete measurement vector of length T , for each pollutant. We define the

connections between nodes and compute the weighted adjacency matrix, by setting

the distance threshold between two neighbouring nodes to δ = 200 m.

7https://github.com/lenhhoxung86/antwerp air pollution data

105

https://github.com/lenhhoxung86/antwerp_air_pollution_data

Chapter 5. Graph-based Deep Learning for Analyzing Internet-of-Things Data:
Toward Smart City Applications

Table 5.3: Description of datasets with different spatio-temporal resolution. The percentage of
known entries is the percentage of non-zero entries over total entries.

SSTR HSR HTR HSTR

locations N 4948 8166 4948 8166

timeslots T 720 720 1440 1440

percentage (%) of known entries NO2 0.355 0.234 0.18 0.117

unmeasured locations NO2 2986 5613 2986 5613

percentage (%) of known entries PM2.5 0.331 0.217 0.168 0.109

unmeasured locations PM2.5 2848 5497 2848 5497

percentage (%) of known entries PM10 0.041 0.033 0.020 0.016

unmeasured locations PM10 4939 8155 4939 8155

Table 5.4: Concentration of air pollutants in the considered dataset. The unit for NO2 is parts
per billion (ppb). The unit for PM2.5 and PM10 is microgram per cubic meter (µg m−3)

.

NO2 PM2.5 PM10

Max concentration 82.7 40.88 57.33

Min concentration 0.01 0.01 0.03

Mean concentration 32.84 16.55 20.77

Experimental Setting

We randomly divide the known entries in the considered datasets into training and

test sets. Specifically, we use 90% of the known entries for training and the rest for

testing. We repeat this procedure with 5 random splitting and report average results

for two common evaluation metrics, namely, the root mean squared error (RMSE)

and the mean absolute error (MAE).

The AVGAE model: The parameters of the AVGAE model are chosen experimen-

tally. We use three GCONV layers for the encoder and one GCONV layer for the

decoder. For all GCONV layers, we use the same dimensionality, that is, D = 512.

We employ ReLU to activate the GCONV layers of the encoder except for the last

GCONV layer of the σ branch, where the sigmoid function is used because σ should

contain strictly positive entries. Since the output is unbounded, it is not necessary to

use an activation function for the GCN layer of the decoder. In the training objective

(5.15), we set the KL divergence coefficient to β = 0.1, the temporal smoothness

coefficient to γ = 0.8, and the temporal neighborhood width to wT = 3. We train

the model using a learning rate α = 0.005; the dropout rate is set to 0.4.

The MAVGAE model: Each branch of the MAVGAE model follows the design of an

individual AVGAE model with all the parameters set as in the single AVGAE. The

fusion layer has a dimension equal to K × 512, where K is the number of the input

106

5.4. Hyperlocal Air Pollution Inference with Graph Variational Autoencoders

pollutants, and is activated by a ReLU function. The training is also performed

using the same parameters with the single AVGAE model.

Benchmark models: We compare the proposed models with interpolation, matrix

completion and graph-based matrix completion methods. The benchmark inter-

polation methods include two well-established kriging-based models, that is, the

linear and exponential models [105]. These kriging-based models, commonly used in

air quality inference [219], are based on spatial interpolation. In our experiments,

they are applied to each column of X (corresponding to one timeslot) using the

geocoordinates information in S. While we are aware of a spatio-temporal kriging

technique [160], due to extremely expensive computation, comparing our method

against the spatio-temporal kriging technique is not feasible. In addition, spatio-

temporal regression kriging [99, 237], an extension of kriging proposed recently,

could not be used as baseline since it employs additional context features, which

are not used by the proposed models. The benchmark matrix completion methods

include three popular matrix factorisation techniques (i.e., KNN-based collaborative

filtering [107], SVD-based matrix completion [108], non-negative matrix factoriza-

tion (NMF) [131]) and the extendable neural matrix completion method (a.k.a.,

NMC [153]) which is a deep learning approach. These models perform completion

under an assumption on X, e.g., a low-rank prior. Since the proposed solution is

a matrix completion on graphs approach, we also compare against a graph-based

matrix completion method, namely, the RGCNN model [144]; this model is selected

as it has shown compelling performance in addressing the matrix completion on

graphs problem. We use the same graph as in our AVGAE model as the graph

for the row-factor matrix of RGCNN; the hyper-parameters are set as in [144].

Our last baseline model is a simple CNN autoencoder. Similar to the proposed

model, the CNN autoencoder model has two parts: the encoder and decoder. The

encoder has two convolutional layers (SAME padding) and two max-pooling layers;

the max-pooling layers reduce the size of the input by half. The decoder has two

deconvolutional layers and two unpooling layers (see [19]). The encoder is connected

with the decoder via a fully connected layer. To use this CNN autoencoder, the

matrix X is converted to a 4D tensor of shape [T,H,W,C], where T is the number of

time instances, H and W are the size of the grid covering the considered geographical

area, and C is the number of channels; C is set to 3, which is the same with the

parameter ωT mentioned earlier. For the implementation, we rely on PyKrige8 for

the kriging models, and Surprise9 for the reference matrix completion techniques.

The implementations of [153, 144] are available online. The CNN autoencoder and

proposed models are implemented using Tensorflow. All models have been trained

with our datasets.

8https://pykrige.readthedocs.io/en/latest/index.html
9https://surprise.readthedocs.io/en/stable/index.html

107

Chapter 5. Graph-based Deep Learning for Analyzing Internet-of-Things Data:
Toward Smart City Applications

Table 5.5: Comparison of air quality inference models using the SSTR dataset.

NO2 PM2.5 PM10

MAE RMSE MAE RMSE MAE RMSE

kriging linear [105] 8.03 11.55 3.65 5.35 10.06 13.22

kriging exponential [105] 7.21 10.73 3.26 4.92 6.34 8.57

KNN-based collaborative filtering [107] 8.40 11.42 3.09 4.47 4.84 6.12

SVD [108] 12.74 15.79 8.02 9.45 8.52 10.57

NMF [131] 25.56 29.75 10.37 12.61 13.75 15.97

NMC [153] 9.49 12.34 3.66 4.96 6.47 8.54

RGCNN [144] 10.11 12.85 4.86 6.18 5.46 7.11

CNN Autoencoder 10.95 14.25 4.36 5.94 10.45 13.31

AVGAE (Proposed) 6.27 9.25 2.55 3.65 5.04 6.87

MAVGAE (Proposed) 6.03 8.86 2.45 3.61 4.3 5.7

Table 5.6: Performance of air quality inference models at high spatio-temporal resolution. HSR,
HTR and HSTR stand for high spatial, high temporal and high spatio-temporal resolution,
respectively.

NO2 PM2.5 PM10

Dataset Method MAE RMSE MAE RMSE MAE RMSE

SSTR
kriging exponential [105] 7.21 10.73 3.26 4.92 6.34 8.57

AVGAE 6.27 9.25 2.55 3.65 5.04 6.87
MAVGAE 6.03 8.86 2.45 3.61 4.3 5.7

HSR
kriging exponential [105] 6.8 10.15 3.08 4.76 5.08 7.13

AVGAE 6.25 9.26 2.62 4.08 4.59 6.08
MAVGAE 5.97 8.92 2.51 3.95 4.29 5.66

HTR
kriging exponential [105] 7.04 10.35 3.23 4.92 7.11 9.70

AVGAE 6.46 9.37 2.79 4.03 5.55 7.34
MAVGAE 6.11 9.01 2.59 3.83 4.62 5.98

HSTR
kriging exponential [105] 6.95 10.35 3.13 4.86 5.04 7.12

AVGAE 6.72 10.07 2.74 4.12 4.59 6.06
MAVGAE 6.32 9.48 2.61 3.98 4.34 5.66

Comparison against the State of the Art

In our first set of experiments, we employ the SSTR dataset and compare the

proposed AVGAE and MAVGAE models with the baseline models. The results

are presented in Table 5.5. As can be seen, kriging-based methods provide good

estimation accuracy, particularly the exponential model. These models manage to

capture properly the spatial correlation in the air quality measurements with respect

to the geodesic distance. On the other hand, matrix completion models assume

that there are hidden factors characterizing rows (a.k.a., discrete locations) and

columns (a.k.a., timeslots). While this assumption is appropriate for other problems

such as recommendation systems, it does not properly capture the spatio-temporal

correlation in the concentration of air pollutants. The CNN autoencoder does not

108

5.4. Hyperlocal Air Pollution Inference with Graph Variational Autoencoders

perform well though its formulation allows exploiting the spatio-temporal correlation

of air pollution data. This can be explained by the fact that all measurements lie

on roads. Thus, using a regular grid to handle these measurements results in a

huge number of irrelevant cells (pixels); these cells may cover non-road locations

like buildings or parks, thus they do not have any measurements. Hence, the input

tensor of the CNN autoencoder is very sparse. Furthermore, two nearby cells might

not have similar air quality concentration if there is a tall building between them.

These difficulties lead to a low performance of the CNN autoencoder.

Among single air pollutant inference models, it is evident that the AVGAE model

achieves the best performance in terms of MAE and RMSE for all the considered

pollutants. In contrast to kriging models, AVGAE effectively captures both the

temporal and spatial correlations in the data, and leverages the underlying graph

structure of street network. Furthermore, unlike the reference matrix completion

methods, either graph-based or not, AVGAE adheres to an autoencoder model,

which provides good performance in reconstruction problems. When observations for

different air pollutants are available, the MAVGAE model delivers the best results

as it manages to capture the correlation among multiple air pollutants.

Spatio-temporal Resolution Analysis

A second set of experiments aims to investigate the performance of the pro-

posed models with respect to the spatio-temporal resolution. Our experiments are

conducted on the HSR, HTR and HSTR datasets (see Table 5.3). We run the

AVGAE and MAVGAE models with the same parameter setting. We compare the

proposed models with the exponential kriging method, which has shown very good

performance among the baseline models in the standard spatio-temporal resolution

(SSTR) dataset.

Results for the high resolution datasets are reported in Table 5.6. The Table also

includes results for the SSTR dataset, which have already presented in Table 5.5, for

easy comparison. As can be seen, our deep learning models outperform the baseline

exponential kriging method in all datasets. The best results are delivered by the

MAVGAE model, which leverages the correlation among different air pollutants.

Higher spatial and temporal resolution may slightly reduce the performance of the

proposed models due to the higher scarcity of data (see Table 5.3). Nevertheless,

the reduction in performance is small, indicating that our models are robust with

respect to the spatio-temporal resolution.

Visualization of Completed Data

In order to intuitively see how the proposed models maintain the spatial correlation

of air quality data, we visualize the NO2 measurements collected between 10:00 and

109

Chapter 5. Graph-based Deep Learning for Analyzing Internet-of-Things Data:
Toward Smart City Applications

Figure 5.7: The visualization of original and completed measurements of NO2 for a time instance
of one hour. Different colours represent different levels of air pollution. The spatial correlation in
air quality data can be observed via the clusters of nearby datapoints with similar color and the
smooth transition of colors across the city of Antwerp. Image source [51].

11:00 on the map of Antwerp leveraging Mapbox10. Specifically, each measurement

is represented by a coloured dot; the color indicates the value of concentration. The

completed measurements, which are outputted by the AVGAE model, are visualized

the same way (see Figure 5.7). The visualization shows that the spatial correlation

in NO2 concentration is preserved as illustrated by coloured clusters. In addition,

transition from one cluster to others is smooth, suggesting no sudden changes in

the NO2 concentration. Overall, it is easy to see that from a small number of real

measurements, the model is able to infer measurements for entire city. Still, there

are places without a measurement, however, it is because the SSTR dataset is used

in this visualization. If higher spatial resolution is used (e.g., HSTR dataset), the

model will be able to predict the NO2 concentration for more places.

The 3D visualization of original and completed NO2 measurements is illustrated

in Figure 5.8, where data for one day (i.e., April 08, 2019) is taken into account. As

mentioned before, each measurement is the hourly mean for one specific location.

The left figure shows that the total number of NO2 measurements in a day is

limited, while the right figure suggests the proposed model is able to infer the NO2

concentration for the entire city.

10https://www.mapbox.com/

110

https://www.mapbox.com/

5.5. Conclusion

Figure 5.8: 3D visualization of original (left) and completed NO2 measurements (right) for April
08, 2019 in Antwerp. The vertical axis indicates the time dimension in hours and the two other
axes are for longitude and latitude. The color indicates NO2 concentration value.

5.5 Conclusion

Smart cities leverage a huge number of IoT sensors for their services and applica-

tions, resulting in streams of heterogeneous big data that is produced and consumed

at an unprecedented speed. This gives rise to new challenges for data processing

and analysis. Specifically, big data streams are often noisy and may contain missing

values, thus they need to be normalized before being using. Furthermore, existing

analysis models usually ignore the graph structure information of the data. As

discussed, the structural information represents the correlation between instances,

and neglecting this information may hinder the capability of models in gaining

insights from data.

In this chapter, we addressed two commonly found problems of big hetero-

geneous data, namely data denoising and completion. Addressing these two problems

matches our first goal of “big data quality improvement”. Regarding the first

problem, we considered denoising traffic data collected from highways. We proposed

a graph autoencoder with a global pooling technique based on Kron reduction

technique. The proposed model is able to well capture the spatial correlation in

the traffic data, leading to good performance in traffic signal denoising compared to

existing methods.

Secondly, we focused on completing air quality data, a problem we refer to as air

quality inference. In this problem, we aimed to predict air quality measurements

at unmeasured locations and time instances. We formulated this problem as a

matrix completion on graphs and addressed it by proposing a novel variational

graph autoencoder, termed AVGAE. The proposed model efficiently captures spatio-

temporal correlation in the air quality data. We also extended the AVGAE model

following a multiview strategy, which enables the prediction of multiple pollutants.

111

Chapter 5. Graph-based Deep Learning for Analyzing Internet-of-Things Data:
Toward Smart City Applications

We conducted comprehensive experiments using air quality data collected from the

Antwerp city in Belgium, and showed that the proposed models outperform existing

state-of-the-art methods. In addition, our models are general and could be applied

to other matrix-completion-on-graph problems.

112

Chapter 6

Graph Neural Networks with

Message Passing and DropNode

6.1 Introduction

In previous chapters, we have gone through important topics in graph-based

deep learning, especially graph neural networks (GNNs). Among the various GNN

models proposed in the literature, graph convolutional neural networks (GCNNs)

have been of great interest due to their state-of-the-art performance in various

applications. Our contributions in social media data and IoT data analytics, de-

scribed in Chapters 4 and 5, are also based on GCNNs. This chapter goes one

step further by addressing a fundamental problem in graph-based deep learning,

namely, designing GCNNs for general tasks such as node classification and graph

classification. These tasks are commonly shared between a number of applications

in natural language processing (e.g., text classification [226]), computer vision

(e.g., image classification [169]) and computational biology (e.g., protein interface

prediction [59]).

The operation of many GCNNs can be expressed with a two-phase process,

namely, Message Passing and Readout [64]. The message passing phase disseminates

messages (e.g., feature vectors of nodes) between neighboring nodes and aggregates

these messages to compute latent node representations. The readout phase trans-

forms node representations into final node embeddings or a unique graph embedding.

A classifier is then used to produce suitable outputs. The message passing phase is

the key component for a GCNN model to incorporate structural information from

the underlying graph, distinguishing a GCNN model from others. Still, designing ef-

fective message passing operations remains a challenging task. Several message pass-

ing formulations have been proposed, including the formulations in [64, 55, 103, 72].

The material in this chapter is based on the author’s publications [46]

113

Chapter 6. Graph Neural Networks with Message Passing and DropNode

Recently, formulations based on random walk transition probabilities have been

proven useful for multiple graph-based classification tasks [5, 232]. Nevertheless,

these formulations have not received enough attention from the research community.

In addition, other challenges such as the over-fitting and over-smoothing problems

(e.g., especially when deploying deep GCNNs) often arise in GCNNs. In order to

address over-fitting, popular regularization methods such as l1, l2 and dropout [195]

are usually employed. However, performance gains brought by these methods

generally are usually limited as GCNNs become deeper [103]. It is worth noting that

over-fitting is a generic problem, i.e., it happens for all types of neural networks,

including GCNNs. On the other hand, over-smoothing [123, 26] is specific for deep

GCNNs due to the inherent smoothing effect of these models. Specifically, when

many graph convolutional layers are stacked together, the obtained representations

of nodes in different classes (or clusters) gradually become indistinguishable and

inseparable, leading to degraded performance in downstream tasks such as node

classification.

In this chapter, we aim to develop effective GCNN models to handle graph-

structured data by addressing the challenges mentioned earlier. Firstly, we design

a message passing scheme for GCNN employing the node transition probabili-

ties. Specifically, we observe that the transition directions employed in existing

works [5, 232] are sub-optimal since high weights (i.e., influence) are assigned to

“popular” nodes (i.e., the ones with multiple connections). Based on this observa-

tion, we propose a novel message passing scheme that mitigates the aforementioned

issue by assigning balanced weights to all the nodes in the graph. We experimentally

validate the effectiveness of the proposed scheme in node and graph classification

tasks. Furthermore, we introduce a novel regularization method called DropNode to

address the over-fitting and over-smoothing problems of GCNNs. The key idea of

this method is to modify the underlying structure of the graph during the training

step by randomly sub-sampling nodes from the graph. DropNode is simple; however,

it is highly effective in improving the performance of GCNNs, especially in training

deep GCNN models.

To summarize, our contributions in this chapter are three-fold. First, We propose

a novel neural message passing operation for GCNNs, which leverages the node tran-

sition probabilities. The message passing operation takes the “popularity” of nodes

into account. Second, we propose DropNode, a simple and effective regularization

technique, which is applicable to different GCNN models. Finally, we carry out

comprehensive experiments on eight real-world benchmark datasets on both node

and graph classification tasks to evaluate the proposed models. Experimental results

demonstrate that our models are able to obtain improved performance over state-

of-the-art models. We believe that our method is general and can be used for a

wide range of applications. In what follows, the details of the proposed method are

described.

114

6.2. Proposed Method

6.2 Proposed Method

Our contributions, namely a new message passing scheme and DropNode regular-

ization, are detailed in this section. First, we describe existing message passing

schemes [103, 232]. Afterwards, we introduce the proposed scheme (which follows

node transition-based approaches) in comparison with the existing methods. The

proposed message passing leads to a new graph convolutional layer formulation.

Lastly, we present DropNode, a simple yet effective generic regularization method,

and we show the difference between DropNode and the widely used dropout regu-

larization.

6.2.1 Graph Convolutional Layers

Existing Messaging Formulations

As presented earlier in the Introduction section, the formulation of a graph convolu-

tional layer in a GCNN model usually expresses the underlying message passing

scheme. Many types of graph convolutional layers have been proposed in the

literature that generally follow the same formulation:

H(l+1) = σ(MH(l)W(l)), (6.1)

where H(l) ∈ RN×F is the input to the l-th layer, W(l) ∈ RF×K is the weight matrix

of this layer, M ∈ RN×N is a matrix containing the aggregation coefficients, and σ

is a non-linear activation function such as the sigmoid or the ReLU.

The message passing scheme, as shown in (6.1), can be broken down into two

substeps, namely aggregate and update. The former substep transforms node features

using a linear projection, which is parameterized by a matrix of learnable weights

W(l). Subsequently, for a node in the graph, the features of its neighbors are

aggregated by performing a weighted sum with the corresponding weights defined

in M. This substep can be seen as a message aggregation stage from the neighbors

of each node. In the update substep, a non-linear transformation is applied to the

aggregated features to produce new representations H(l+1) for the nodes.

The aggregation coefficient matrix M defines the message passing scheme,

i.e., the way in which features are exchanged between nodes. An entry Mij of

M represents the coefficient assigned to features of a source node j when being

aggregated toward a destination node i. As such, the i-th row of M specifies the

weights assigned to features of all the nodes when being aggregated toward node

i. Alternatively, the j-th column of M specifies the weights assigned to a node j

when being aggregated toward all the other nodes. Intuitively, the rows and the

columns of matrix M determine the influence of the nodes on a destination node,

and the influence of a source node on the other nodes, respectively. By defining the

115

Chapter 6. Graph Neural Networks with Message Passing and DropNode

aggregation coefficient matrix M, one can specify a message passing scheme. For

instance, in a GCN model [103], M is computed by:

M = D̃−
1
2 ÃD̃−

1
2 , (6.2)

with Ã = A + IN and IN ∈ RN×N is an identity matrix. By adding the identity

matrix IN , self-connections are taken into account, i.e., a node aggregates features

from both its neighbors and itself. D̃ is a diagonal matrix with D̃ii =
∑N
j=1 Ãij .

In (6.2) each element of Ã is normalized by a factor equal to the square root of the

product of the degrees of the two corresponding nodes, namely Mij = Ã√
D̃iiD̃jj

.

Unlike GCN, the DGCNN model [232] calculates the aggregation coefficients

(Mij) as one-hop node transition probabilities (P̃ij) (see Section 3.2.1, Chapter 3):

M = P̃ = D̃−1Ã. (6.3)

Note that in the DGCNN model, the aggregation coefficients are created by nor-

malizing the adjacency matrix using the degrees of the destination nodes. Therefore,

the neighboring nodes of a destination node have the same influence (i.e., weights)

on the destination node, even though their popularity level (e.g., node degrees)

may vary significantly. This is not desired as a popular node (a.k.a., celebrity) is

often connected with many other nodes, thus messages from the popular node is

not as valuable as messages from normal nodes with lower level of popularity. The

issue of popular nodes has been mentioned in [49, 170], where connections to these

nodes are explicitly removed. In addition, we observe that in many text retrieval

weighing schemes such as TF-IDF, the popular terms across documents are given

smaller weights compared to less popular terms. This observation motivates us to

modify (6.3) by imposing penalties on celebrity nodes, which we describe thoroughly

in the next section.

Convolutional Layer via Transition Probabilities

We propose a message passing scheme that makes use of the node transition

probabilities, as in the DGCNN model [232]. Unlike the DGCNN, we use the degrees

of source nodes instead the degree of destination nodes for the normalization of

the aggregation coefficients. In particular, the aggregation coefficient matrix M is

calculated as:

M = ÃT D̃−1. (6.4)

In (6.4), M contains one-hop node transition probabilities. Mij is the probability

of transitioning from a source node j to a destination node i. As these probabilities

are normalized using the degrees of the source nodes, we have
∑N
i=1 Mij = 1,∀j ∈

116

6.2. Proposed Method

{1, . . . , N}. It should be noted that in this case,
∑N
j=1 Mij 6= 1, which is different

from the DGCNN model (as shown in (6.3)). It can be observed that matrix M

in (6.4) is the transpose of P̃ in (6.3) as D is a diagonal matrix.

Substituting M in (6.4) into the generic formulation in (6.1), we obtain the

formulation for our graph convolutional layer as follows:

H(l+1) = σ(ÃT D̃−1H(l)W(l)). (6.5)

We refer to this graph convolutional layer as the transition Probability based Graph

CONVolutional layer, abbreviated as GPCONV (for ease of reference, we also use

GCONV to refer to the graph convolutional layer proposed by [103]). Intuitively, as

the adjacency matrix is normalized by the degrees of source nodes, a node always has

the same influence on its neighboring nodes. Specifically, a node’s message (feature

vector) is disseminated to its neighbors with the same weight. As a result, a popular

node (i.e., high degree) will have a smaller influence on its neighbors as the transition

probability to jump from the popular node to an unpopular node is very small. As we

analyzed earlier in Section 6.2.1, penalizing higher-degree nodes has been commonly

enforced in various contexts, such as term weighting and node embedding. In the

next section, we give a detailed example to illustrate this point.

Comparison with Existing Formulations

We denote by H̃(l+1) the result of the aggregation step, i.e., the product of the

aggregation coefficient matrix and the input representations, H̃(l+1) = MH(l). Thus:

H̃
(l+1)
i = Mi1H

(l)
1 + Mi2H

(l)
2 + · · ·+ MiNH

(l)
N =

N∑
j=1

MijH
(l)
j , (6.6)

∀i ∈ {1, . . . , N}. Here, H
(l)
j and H̃

(l+1)
i are row vectors; H

(l)
j represents the

representation (or feature) of node j at the l-th layer.

To illustrate the difference between the proposed graph convolutional layer’s

formulation and the DGCNN model [232], we consider an example of a graph

containing four nodes, 1, 2, 3 and 4, as shown in Figure 6.1. These nodes are

associated with feature vectors X1, X2, X3 and X4 ∈ RF . We denote with P̃ ∈ R4×4

the transition probability matrix, as calculated in (6.3), and the aggregate step in

the DGCNN model produces an aggregated feature representation for node 1 as:

H̃1 = P̃11X1 + P̃12X2 + P̃13X3 + P̃14X4

= 0.33X1 + 0.33X2 + 0.33X4.
(6.7)

117

Chapter 6. Graph Neural Networks with Message Passing and DropNode

1

𝑷𝟐𝟐

𝑷𝟑𝟑

𝑷𝟑𝟐
𝑷𝟐𝟏

𝑷𝟏𝟐

𝑷𝟏𝟏

𝑋$ =
𝑋$$
⋮
𝑋$%

𝑋& =
𝑋&$
⋮
𝑋&%

𝑋' =
𝑋'$
⋮
𝑋'%

𝑀 = 𝑃$ =

0.33 0.33 0 0.33
0.25 0.25 0.25 0.25
0 0.5 0.5 0
0.33 0.33 0 0.33

𝐻+! = 0.33𝑋! + 0.33𝑋" + 0.33𝑋#

𝑀 =	𝑃$$ =

0.33 0.25 0 0.33
0.33 0.25 0.5 0.33
0 0.25 0.5 0

0.33 0.25 0 0.33

𝐻+! = 0.33𝑋! + 0.25𝑋" + 0.33𝑋#

(c)

(d)

2

3

𝑷𝟐𝟑

𝑀 = 𝐴$ =

1
3

1
12

0
1
3

1
12

1
4

1
8

1
12

0
1
8

1
2 0

1
3

1
12

0
1
3

(a)

𝐻+! = 0.33𝑋! + 0.29𝑋" + 0.33𝑋#

4 𝑷𝟒𝟐

𝑷𝟐𝟒

𝑷𝟒𝟒

𝑋) =
𝑋)$
⋮
𝑋)%

𝑷𝟏𝟒
𝑷𝟒𝟏

𝐴1 =

1 1 0 1
1 1 1 1
0 1 1 0
1 1 0 1

(b)

Figure 6.1: A graph with four nodes and four edges (solid lines) with directed transition
probabilities indicated by dashed lines. (a) shows the adjacency matrix with self-connections added.

(b), (c) and (d) show the equations to calculate the aggregated feature representation (i.e., H̃1)
for node 1, following the formulations in the GCN model [103], the DGCNN model [232] and the
proposed scheme, respectively. We observe that in the proposed scheme, (i) the highest-degree node

(i.e., node 2) is less influential in calculating H̃1 than the other nodes, which are of lower degrees,
and (ii) the overall influence of a node on their neighboring nodes are the same (i.e., entries in a
column, where there exist corresponding connections, have the same value.).

Using the proposed scheme (i.e., (6.4)), we obtain:

H̃1 = P̃11X1 + P̃21X2 + P̃31X3 + P̃41X4

= 0.33X1 + 0.25X2 + 0.33X4.
(6.8)

Even though (6.8) has the similar form to (6.7), the intuition behind the two

is different. On the one hand, with our formulation, messages from each node

(i.e., source nodes 1, 2, 3, 4) to node 1 (destination node) are passed following the

probabilities of transitioning in the source-destination directions, namely, from the

source nodes to destination node. On the other hand, in the DGCNN model, the

same messages are passed following the transitioning probabilities in the reverse

directions. We argue that the former is more intuitive and can lead to a more natural

message passing scheme.

Another important distinction between the two formulations lie in the way the

influence (i.e., weights) of the nodes are determined. As shown in (6.7), the DGCNN

model gives a weight of 0.33 to X2 in calculating H̃1 while the proposed scheme

uses a weight of 0.25. Bear in mind that node 2 has the highest degree of 4 (self-loop

118

6.2. Proposed Method

added), we can conclude that the proposed scheme gives lower weight to nodes with

higher degree. This leads to an effect similar to the TF-IDF weighting scheme as

discussed in Section 6.2.1. In Section 6.3, we will empirically justify the benefits of

the proposed formulation. Next, we will present how we build GCNN models, with

the GPCONV layers as the main building block, for node and graph classification

tasks.

6.2.2 Graph Convolutional Networks with GPCONV Layers

By leveraging the proposed GPCONV layers, we construct two models, one for node

classification and the other for entire graph classification. For node classification, we

simply stack multiple GPCONV layers, and connect the output with a softmax clas-

sifier. This model is named PGCNn; the small letter n refers to node classification.

The forward pass of the model can be expressed by

Ỹ = softmax
(
Mσ

(
. . . σ

(
MXW(1)

)
. . .
)
W(L)

)
, (6.9)

where L denotes the number of GPCONV layers.

Similarly, the model for graph classification is created by connecting multiple

GPCONV layers. As a unique embedding is needed for each graph, we employ

mean-pooling as this pooling has been reported useful in graph classification [145,

12]. We refer to our graph classification model as the PGCNg. Here, g stands for

graph classification, which differentiates it from the proposed node classification

model PGCNn. The PGCNg can be expressed by

H = σ
(
Mσ

(
. . . σ

(
MXW(1)

)
. . .
)
W(L)

)
, (6.10)

h = mean-pooling
(
H
)
, (6.11)

ỹ = softmax
(
FC
(
h
))
, (6.12)

where FC indicates a fully connected (linear) layer between the pooled represen-

tation h and the softmax classifier. In practice, multiple graphs can be stacked

together by concatenating the corresponding adjacency matrices diagonally and

concatenating the feature matrices vertically. In that case, the pooling operation

in (6.11) is applied graph-wise.

6.2.3 DropNode Regularization

As mentioned in Section 6.1, GCNNs suffer from two issues, namely over-fitting and

over-smoothing. To address over-fitting in GCNNs, we can rely on regularization

techniques like l2 regularization or dropout. Still, as reported by [103], when more

layers are added to a GCNN model, the performance of GCNNs falls significantly

even with the presence of these regularization techniques, especially for small-sized

119

Chapter 6. Graph Neural Networks with Message Passing and DropNode

datasets. On the other hand, over-smoothing occurs as a result of the smoothing

effect of GCNNs. In [123], it is shown that graph convolution is one instance of

Laplacian smoothing, which mixes features of a node and its neighboring nodes.

Laplacian smoothing makes the representations of nodes in a cluster similar, easing

downstream tasks such as node classification. However, stacking many GCONV

layers corresponds to repeatedly applying Laplacian smoothing; this could lead to

mixing node features from different clusters, making nodes indistinguishable. As far

as we know, few works have focused on tackling the two issues simultaneously. In this

thesis, we propose a novel regularization technique for GCNNs termed DropNode,

aiming to address these issues at once.

The basic idea behind DropNode is to randomly sample sub-graphs from an

input graph at each training iteration. It is achieved by randomly eliminating nodes

following a Bernoulli distribution with a pre-defined probability 1 − p, p ∈ (0, 1).

Such node dropping procedure can be seen as a downsampling operation, which

reduces the dimension of the graph features by a factor of 1 − p. To reconstruct

the original graph structure, each node dropping operation can be paired with

an upsampling operation, which comes subsequently in the architecture of our

GCNN models. The two operations are implemented as individual layers, which

we refer to as the “downsampling” and “upsampling” layers. These operations are

very similar to the K-pooling and unpooling layers introduced in Section 5.3.1.

However, as the sampling used in DropNode follows a distribution (i.e., Bernoulli),

its result is non-deterministic, thus the nodes retained after the sampling change

every training iteration, whereas the model proposed in Section 5.3.1 follows a

deterministic subsampling approach.

A downsampling layer (which is the l−th layer in the model) takes an input

H(l) ∈ RN×Kl , where N is the number of nodes and Kl the dimension of their

representations. The layer randomly samples Nl = bpNc rows in H(l) to retain

and remove the other dN(1 − p)e rows (b.c and d.e represent the floor and ceiling

functions, respectively). Here, the value p is referred to as the keep ratio. The outputs

of this layer are (i) a sub-matrix of H(l), namely, H(l+1) ∈ RNl×Kl , and (ii) a vector

containing the indices of the rows in H(l) that are retained. The second output will

be used in a subsequent upsampling layer that is paired with this layer. Suppose

that the aforementioned downsampling layer is paired with the upsampling layer,

which is the k−th layer of the model where k > l, this upsampling layer takes as

input a matrix H(k) ∈ RNl×Kk and produces an output matrix H(k+1) ∈ RN×Kk .

Each row in H(k) is copied to a row in H(k+1) according to the vector of indices

obtained by the l−th layer. The rows in H(k+1) that do not correpond to a row in

H(l) are filled in with zeros.

In our GCNN models, a downsampling layer follows a convolutional layer.

Depending on the model design, upsampling layers may be used or not. Nevertheless,

an upsampling layer, if used, must always correspond to a downsampling layer.

120

6.2. Proposed Method

G
PC
O
N
V

G
PC
O
N
V

𝑿: Feature

G
PC
O
N
V

𝑿 ∈ ℝ𝑵×𝑭 𝑯(𝟏) ∈ ℝ𝑵×𝑲𝟏

Downsampling Upsampling

𝑯(𝟐) ∈ ℝ 𝒑𝑵 ×𝑲𝟏 𝑯(𝟑) ∈ ℝ 𝒑𝑵 ×𝑲𝟐

𝑯(𝟒) ∈ ℝ𝑵×𝑲𝟐 𝒀% ∈ ℝ𝑵×𝑪

Removed
in

testing
phase

Softmax

Figure 6.2: The architecture of the PGCNn+DropNode model with two GPCONV layers and one
pair of downsampling-upsampling layers for the node classification task. This architecture appears
to have autoencoder-like structure with encoder containing GPCONV layers and downsampling
layers, while the decoder contains GPCONV layers and upsampling layers.

Similar to dropout, the proposed DropNode method operates only during the

training phase. During the testing phase, all the nodes in the graph are used for

prediction. We should note that in the case that the upsampling layers are not

employed, the output of each downsampling layer needs to be scaled by a factor of
1
p . This scaling operation is to maintain the same expected outputs for neurons in

the subsequent layer during the training and testing phases (similar to dropout).

An important property of DropNode is that one or multiple sub-graphs are

randomly sampled at each training iteration. Hence, the model does not see all the

nodes during the training phase. As a result, the model should not rely on only

a single prominent local pattern or on a small number of nodes, but to leverage

information from all the nodes in the graph. The risk for the model to memorize

the training samples, therefore, is reduced, avoiding over-fitting. In addition, the

model is trained using multiple deformed versions of the original graphs. This

can be considered as a data augmentation procedure, which is often used as an

effective regularization method. On the other hand, the DropNode method reduces

connectivity between nodes in the graph. Lower connectivity helps alleviate the

smoothing of representation of the nodes when the GCNN model becomes deeper.

As a result, features of nodes in different clusters will be more distinguishable,

which eventually lead to improved performance on different downstream tasks for

deep GCNN models.

The integration of DropNode into the proposed model for node classification

(i.e., PGCNn) is illustrated in Figure 6.2, where three GPCONV layers and a pair

of downstampling-upsampling layers are considered. We refer to this model as the

121

Chapter 6. Graph Neural Networks with Message Passing and DropNode

G
PC
O
N
V

𝑿: Feature

Global
Mean

Pooling FC
 La

ye
r

𝑿 ∈ ℝ𝑵×𝑭 𝑯(𝟏) ∈ ℝ𝑵×𝑲𝟏

D
ow
ns
am
pl
in
g

𝑯(𝟐) ∈ ℝ 𝒑𝑵 ×𝑲𝟏

GPD

𝑯 ∈ ℝ𝑫
Softmax 𝒚% ∈ ℝ𝑪

FC
 L

ay
er

Figure 6.3: The PGCNg+DropNode model for graph classification. A GPCONV layer is combined
with a downsampling layer to create a GPD block. Several GPD blocks can be stacked together
to achieve better expressiveness power. The output of the final GPD block will be globally mean
pooled making the final representation of the graph as denoted by H. One or several fully-connected
layer(s) (FC layers) and a softmax classifier are employed to predict the label of the graph.

PGCNn + DropNode model. It appears that the PGCNn + DropNode model has its

architecture similar to an autoencoder. In addition, the number of GPCONV layers

is always equal to the number of downsampling-updsampling pairs doubled plus 1.

Algorithm 6 describes how one training iteration works for PGCNn + DropNode.

Different from PGCNn + DropNode, DropNode used in a graph classification

model does not need an upsampling layer. Figure 6.3 shows how DropNode is inte-

grated with the PGCNg model. We refer to this model as PGCNg +DropNode. The

model has a block consisting of one GPCONV layer and one downsampling layer,

which is abbreviated to “GPD” block. The GPD block is followed by a mean-pooling

layer which produces a single representation vector for the whole graph. Then, two

fully-connected (linear) layers and a softmax classifier are added to output class

probabilities for the entire graph. In graph classification, the reconstruction of the

graph structure is not needed (i.e., unlike the case of the node classification task).

Therefore, it is not necessary to employ upsampling layers in the PGCNg+DropNode

model. As a result, the output of a downsampling layer needs to be scaled by a factor

of 1
p during training.

6.3 Experimental Study

6.3.1 Datasets

We consider both node and graph classification tasks; each task is involved with a

set of standard datasets. For node classification, we use three benchmark citation

network datasets1, namely, CORA, CITESEER and PUBMED [185]. Undirected

graphs are created for these datasets by considering scientific papers as nodes

and references between the papers as edges. Each node is represented by a bag-

of-words feature vector extracted from the corresponding document. The descrip-

tion of the considered datasets for node classification is presented in Table 6.1.

1https://linqs.soe.ucsc.edu/data

122

https://linqs.soe.ucsc.edu/data

6.3. Experimental Study

Algorithm 6: One training iteration of PGCNn + DropNode.

input: Measurement matrix X ∈ RN×F , aggregation coefficient matrix M,
keep ratio p, labels Y, number of downsampling-upsampling pairs
Ldu, parameters W(i), i ∈ {1, . . . , 2Ldu + 1}, learning rate α.

1 initialization: Index IX = [] ;
2 Procedure Forward Computation
3 H← X ;
4 for i← 1 to Ldu do
5 H← GPCONV(MHW(i)) ;

6 H, I(i) ← DowSampling(H,Bernoulli(p)) ;

7 IX.insert(I(i));

8 end

9 H← GPCONV(M,H,W(Ldu+1)) ;
10 for i← 1 to Ldu do
11 H← UpSampling(H, IX[i]) ;

12 H← GPCONV(MHW(Ldu+i+1)) ;

13 end

14 Ỹ ← softmax(H)

15 L ← cross entropy(Y, Ỹ)
16 Procedure Backward Computation
17

∂L
∂W(i) ← backward(L,W (i)), i ∈ {1, . . . , 2Ldu + 1} ;

18 Procedure Update
19 W (i) ← update(α,W(i), ∂L

∂W(i)) ;

With regard to the graph classification task, we employ the following datasets2:

the bioinformatics datasets, namely ENZYMES, PROTEINS, D&D, MUTAG; the

scientific collaboration dataset COLLAB [98]; the chemical compound dataset NCI1.

In the bioinformatics datasets, each graph represents a biological structure. For

the COLLAB dataset, a graph represents an ego-network of researchers who have

collaborated with each other [67]. The NCI1 dataset represents the activity against

non-small cell lung cancer [67]. The description of these datasets is presented in

Table 6.2.

6.3.2 Experimental Settings

Classification accuracy is employed as performance metric for both considered

tasks. We employ the standard train/validation/test set divisions of all the con-

sidered datasets for node classification to guarantee a fair comparison with prior

works [103, 204, 60], namely, (140/500/1000) nodes are used for the CORA dataset,

2https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

123

https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

Chapter 6. Graph Neural Networks with Message Passing and DropNode

Table 6.1: Datasets for the node classification tasks. +/− indicates whether the corresponding
features are available or unavailable. The numbers in parentheses denote the dimensionality of the
corresponding feature vectors.

CORA CITESEER PUBMED

Nodes 2708 3327 19, 717

Edges 5429 4732 44, 338

Labels 7 6 3

Node Attr. +(1433) +(3703) +(500)

Edge Attr. − − −

Table 6.2: Datasets for graph classification task. +/− indicates whether the corresponding
features are available or unavailable. The numbers in parentheses denote the dimensionality of
the corresponding feature vectors.

PROTEINS D&D ENZYMES MUTAG NCI1

Graph 1113 1178 600 188 4110

Label 2 2 6 2 2

Avg. Node 39.06 284.32 32.63 17.93 29.87

Avg. Edge 72.82 715.66 62.14 19.79 32.30

Node Label + + + + +

Edge Label − − − + −
Node Attr. +(29) − +(18) − −
Edge Attr. − − − − −

(120/500/1000) nodes are used for the CITESEER dataset and (60/500/1000) nodes

are used for the PUBMED dataset. With these divisions, the amount of labelled

nodes is much smaller than the amount of test nodes, which makes the task highly

challenging. Similar to prior works, we report the mean and standard deviation of

the results over 100 runs with random weight initialization.

Concerning the graph classification task, following existing works [227, 232], we

employ a 10-fold cross validation procedure and report the average accuracy over

the folds. Among the graph classification datasets, only PROTEINS and ENZYMES

provide node features (see Table 6.2), which can be used directly as input to the

proposed models. For the rest of the datasets, we use the degree and the labels of

the nodes as features.

The performance of the proposed method is compared against the state of

the art. Specifically, for the node classification task, the selected baselines are the

GCN [103], GAT [204], GraphSAGE [72], DGI [205], GMNN [168], Graph U-Net [60],

DGCNN [232], and DropEdge [179]. The DGCNN model is originally designed for

graph classification. In order to use this model for node classification, we employ

only its message passing mechanism (see Section 6.2.1) for graph convolutional

layers. For the graph classification task, the Graph U-Net [60], DGCNN [232],

DiffPool [227], GraphSAGE [72], CapsGNN [220] and SAGPool [118] models are

124

6.3. Experimental Study

selected. In addition, following [132], we employ two simple baseslines including

a fully-connected neural network with two hidden layers denoted by FCN, and a

combination of FCN with one graph convolutional layer (GCONV) from the popular

GCN model [103] (see Section Section 6.2.1) denoted as GCN + 2FC. By doing so,

we aim to assess the capability of GCNN models to exploit structural information of

the considered datasets. For each baseline model and a benchmark dataset, we select

the best results reported in the corresponding paper (if available). Otherwise, we

collect the results using either the implementations released by the corresponding

authors or self-implemented source code.

The hyperparameters of the proposed models are found empirically via tuning.

For the node classification model PGCNn, we use two GPCONV layers. This choice

also follows the best configuration suggested in [103]. Each GPCONV layer has a

hidden dimension of 64. In addition, dropout is added after each GPCONV layer

with a dropping rate of 0.7. When DropNode is used (i.e., the PGCNn + DropNode

model), we employ three GPCONV layers (see Figure 6.3), also with a hidden

dimension of 64, and a pair of downsampling-upsampling layers. Compared to the

PGCNn model, one additional GPCONV layer is added between the downsampling

and upsampling layers. The downsampling layer of DropNode has the keep ratio p

selected in such a way that 200 nodes are retained for all the datasets. Dropout is not

used for PGCNn+DropNode since the DropNode has already had the regularization

effect on the considered model. We train the PGCNn and PGCNn+DropNode with

learning rates of 0.01 and 0.001, respectively.

Regarding graph classification models, namely, PGCNg and PGCNg+DropNode,

we employ one GPCONV layer and a single GPD block, respectively. Both models

use two fully-connected layers (LFC=2). The GPCONV and the fully-connected

layers have 512 hidden units each. We use dropout after each layer with a dropping

ratio of 0.5 in the PGCNg model. Similar to the PGCNn + DropNode model, we do

not use dropout for PGCNg+DropNode. For the PGCNg+DropNode, the keep ratio

p is set to p = 0.75, which is much higher than that used for the node classification

models. This is due to the fact that in the considered graph classification datasets,

the graph sizes are much smaller than those in the node classification datasets (see

Tables 6.2 and 6.1). We train both models using a small learning rate of 0.0001.

6.3.3 Node Classification

The node classification results of different models are reported in Table 6.3. The

results show that the PGCNn and GCN [103] models achieve higher accuracy

compared to the DGCNN model. This can be attributed to better message passing

schemes giving smaller weights to popular nodes presented in Section 6.2.1 as these

three models have similar configuration including number of graph convolutional

layers and number of hidden units in each layer. Furthermore, the PGCNn model

125

Chapter 6. Graph Neural Networks with Message Passing and DropNode

Table 6.3: Node classification results in terms of the accuracy evaluation metric (%). We report
the mean and standard deviation of the accuracy over 100 runs. The bold font indicates the
best performance. Our models include PGCNn and PGCNn + DropNode. In addition, we apply
DropNode to the common GCN model [103], referred to as GCNn + DropNode. The asterisk (*)
indicates that the result is obtained by using our own implementation.

Method CORA CITESEER PUBMED

GCN + DropEdge [179] 82.80 72.30 79.60
GMNN [168] 83.7 72.9 81.8
GCN [103] 81.9 ± 0.7 70.5 ± 0.8 78.9 ± 0.5

DGCNN∗ [232] 81.4 ± 0.5 69.8 ± 0.7 78.1 ± 0.4
GAT [204] 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3

Graph U-Net [60] 84.4 ± 0.6 73.2 ± 0.5 79.6 ± 0.2
DGI [205] 82.3 ± 0.6 71.8 ± 0.7 76.8 ± 0.6

PGCNn 81.7 ± 0.5 70.6 ± 0.7 78.4 ± 0.4
GCNn + DropNode 84.6 ± 1.0 74.3 ± 0.5 82.7 ± 0.2

PGCNn + DropNode 85.1± 0.7 74.3± 0.6 83.0± 0.3

achieves marginally better performance compared to the popular GCN model on

the CITESEER dataset, reaching 70.6% compared to 70.5% obtained by the GCN

model. Nevertheless, the PGCNn model performs slightly worse than the GCN

model on the CORA and PUBMED datasets, amounting to a 0.2% and 0.5% drop

in terms of accuracy. This can be explained by the fact that the variance of the

node degree distribution of the CORA (σdegree = 5.23) and PUBMED datasets

(σdegree = 7.43) are higher than that of the CITESEER dataset (σdegree = 3.38).

Recall that the PGCNn model assigns much lower weights on higher degree nodes.

Therefore, the PGCNn model might perform slightly worse compared to GCN on

datasets with high degree imbalance. On the other hand, on datasets with balanced

node degrees, such as CITESEER, the PGCNn model performs better than GCN.

In addition, compared to the other baseline models, the PGCNn model achieves

lower accuracy on CORA, whereas it produces comparable results on CITESEER

and PUBMED. When DropNode is used, it consistently improves the performance

of all considered models. Specifically, PGCNn + DropNode and GCNn + DropNode

notably improve the performance of PGCNn and GCNn by around 4 percentage

points of accuracy. In particular, GCNn + DropNode can reach 84.6%, 74.3% and

82.7% while PGCNn + DropNode achieves the best performance with 85.1%, 74.3%

and 83.0% on the CORA, CITESEER and PUBMED datasets, respectively. It is

worth recalling that in our setting, the number of training examples is much smaller

compared to the number of testing examples. By using DropNode, deformed versions

of the underlying graph are created during each training epoch. As a result, our

model sees different graphs during the training process; this is different from the

normal training process (i.e., without DropNode) where only one graph exists. In

other words, DropNode acts as an augmentation technique on the training data

which leads to an increased performance.

126

6.3. Experimental Study

Table 6.4: Graph classification result in terms of percent (%). FCN stands for fully-connected
neural network (2 FC layers). N/A stands for not available. Daggers mean the results are produced
by running the code of the authors on corresponding datasets (the results are not available in the
original paper).

Method PROTEINS DD ENZYMES MUTAG NCI1

Diff-Pool (GraphSAGE) [227] 70.48 75.42 54.25 N/A N/A

Diff-Pool (Soft Assign) [227] 76.25 80.64 62.53 88.89† 80.36†

Graph U-Net [60] 77.68 82.43 48.33† 86.76† 72.12†

CapsGNN [220] 76.28 75.38 54.67 86.67 78.35

DGCNN [232] 75.54 79.37 46.33† 85.83 74.44
SAGPoolg [118] 70.04 76.19 N/A N/A 74.18
SAGPoolh [118] 71.86 76.45 N/A N/A 67.45

FCN (2FC) 74.68 75.47 66.17 87.78 69.69
GCN + 2FC 74.86 75.64 66.45 86.11 75.90

PGCNg + 2FC 75.13 78.46 66.17 85.55 75.84
GCNg + DropNode 76.58 79.32 69.00 87.27 79.03

PGCNg + DropNode 77.21 80.69 70.50 89.44 81.11

6.3.4 Graph Classification

The results for graph classification are given in Table 6.4. We observe that the simple

FCN can achieve high classification accuracy compared to presented strong baselines

on some datasets. For instance, FCN obtains 74.68% on PROTEINS, which is around

4 percentage points higher than the performance of GraphSAGE and SAGPoolg, and

approximately 3 percentage points higher than SAGPoolh. The good performance

of structure-blind fully-connect neural network has been reported by [132], which

is also confirmed in our work. By adding a GCONV or GPCONV layer on top of

the FCN model (GCN + 2FC, PGCNg + 2FC) the accuracy on PROTEINS, DD

and ENZYMES is marginally improved while the accuracy on NCI1 is improved

by 6 percentage points. This is because the GCONV / GPCONV layers are able

to exploit the graph structure of the considered bioinformatics datasets. By using

DropNode, the performance of our models is further improved. Specifically, our

model with a single GPCONV layer, two FC layers and DropNode (i.e., PGCNg +

DropNode) outperforms all the baselines on PROTEINS, ENZYMES, MUTAG and

NCI1, except for DD where our models perform slightly worse compared to the

Graph U-Net model. Even we do not outperform the Graph U-Net on the DD

dataset, is is clear that DropNode improves the PGCNg by more than 2% accuracy

point. This again confirms the consistency of DropNode in improving GCNN models.

6.3.5 Regularizing Deep Graph Neural Networks

In order to investigate the effect of DropNode on deeper graph convolutional models,

we run our best model comprised of many GPCONV layers with and without

DropNode for node classification on the CORA and CITESEER datasets. The

127

Chapter 6. Graph Neural Networks with Message Passing and DropNode

Table 6.5: Number of nodes kept for downsampling layers. 3GPCONV indicates that there are
three GPCONV layers used. #DL stands for downsampling layer dimensionality. “−” means not
applicable.

3GPCONV 5GPCONV 7GPCONV 9GPCONV

#DL 1 200 200 200 200
#DL 2 − 150 150 150
#DL 3 − − 100 100
#DL 4 − − − 50

Table 6.6: Accuracy (%) of deep GCNNs with DropNode integrated.

3 layers 5 layers 7 layers 9 layers
CORA CITESEER CORA CITESEER CORA CITESEER CORA CITESEER

GCN 79.1 69.0 78.8 61.8 46.2 23.0 13.0 22.2
PGCN 79.8 69.0 77.6 64.4 52.7 35.4 13.0 25.10

GCNn +
DropNode

84.60 74.30 80.80 72.10 71.80 70.40 51.20 66.70

PGCNn +
DropNode

85.10 74.30 81.40 72.30 75.10 70.70 49.60 66.90

number of GPCONV layers is set to 5, 7 and 9; each GPCONV layer has a hidden

dimension of 64. The numbers of nodes that are kept in each case are shown

in Table 6.5. The rest of the parameters have the same values as presented in

Section 6.3.2. The corresponding results are presented in Table 6.6.

It is observed that the performance of the GCN and PGCNn models decreases

considerably when the number of hidden layers increases. Specifically, 9-layer GCN

produces an accuracy score of only 13% on CORA and 22.2% on CITESEER while

similar performance is produced by a PGCNn model with 9GPCONV layers. This

can be explained by the fact that (i) deep GCN / PGCNn models have many more

parameters compared to the shallow ones, which are prone to over-fitting, and (ii) the

deep models suffer from over-smoothing [123, 26], which results in indistinguishable

node representations for the different classes. By applying DropNode on both

models, the classification accuracy is improved significantly, especially in the case

that 7 and 9 layers are used. This is because the effects of over-fitting and over-

smoothing are alleviated.

6.4 Conclusion

In this chapter, we have proposed a new graph message passing mechanism leverag-

ing the transition probabilities of nodes in a graph, for graph convolutional neural

networks (GCNNs). The proposed message passing is based on one-hope node

transition probabilities. Moreover, we have introduced a novel technique termed

DropNode for regularizing the GCNNs. DropNode is simple, however, it is able to

128

6.4. Conclusion

alleviate the adverse effect of over-fitting and over-smoothing. In addition, DropNode

can be integrated into existing GCNN models leading to noticeable improvements

on the considered tasks. Furthermore, it has been shown that DropNode works well

under the condition that the number of labeled examples is limited, which is useful

in many real-life applications when it is usually hard and expensive to collect a

substantial amount of labeled data.

The bioinformatics datasets used in this chapter have shown the potential of

the proposed method in computational biology. As our method is general, it could

be applied to a wide range of applications involving graph-structured data such as

social media or IoT data, as discussed in previous chapters. Another direction of our

future work will focus on generalizing the proposed method on large graphs, e.g.,

reducing the computational cost of re-computing intermediate adjacency matrices.

129

130

Chapter 7

Conclusion and Perspective Work

7.1 Conclusion

Big data has been transforming all facets of modern ICT technologies, bringing

many benefits to our society. By leveraging value stored in big data, various useful

data-driven applications and services can be realized. However, given the volume and

heterogeneity of big data, noise and missing entries are usually present. Furthermore,

big data usually contains complex structures, which are hard to exploit. As a result,

extracting value from big data remains a challenge. This PhD thesis aims to address

these challenges by first improving the quality of big data. Specifically, we attempt to

reconstruct clean data from noisy data and fill missing entries with proper values.

Second, we seek to exploit the complex structures of big data to reveal valuable

insights. As the structures of data — which imply the relations between objects —

can be represented in the form of graphs, we rely on models capable of operating

on graph-structured data, namely graph neural networks (GNNs). GNNs have been

receiving high interest, with a vast number of models proposed over the years. Still,

there is room for improvement related to the message passing mechanism as well

as inherent issues of GNNs, including over-fitting and over-smoothing. Addressing

these issues establishes our third goal of this PhD thesis.

We realize the first and second goals with two representative types of big

heterogeneous data, namely social media data and IoT data. We refer to these

realizations as social media analytics and smart city data analytics although domain-

specific problems have been considered for each data type.

Chapter 4 presented our contribution to social media data analytics. Two specific

problems were selected, namely Twitter user location prediction and fake news

detection. In the first problem, we aimed to predict missing locations of Twitter users

using user-generated data; this task matches the first goal mentioned earlier. We

proposed a multiview deep neural network model, taking as input multiple features,

including textual embeddings, timestamps, and the embeddings of user graph. The

131

Chapter 7. Conclusion and Perspective Work

graph embeddings are based on the biased random walk and Skip-Gram model,

capable of capturing the local connectivity of graphs. We conducted comprehensive

experiments on three benchmark datasets and showed that the proposed multiview

model outperforms the state of the art.

The second problem within social media analytics, described in Section 4.3, is

fake news detection on social media. This problem aligns with our second goal of

leveraging structure in big data. Fake news refers to false statements circulating

on social media platforms such as Twitter, which can cause serious consequences.

Fake news often receives many interactions from many users; some of these users

often share the same kind of untruthful information. Furthermore, fake news is

likely published by several unreliable publishers. By leveraging these observations,

we proposed using graph convolutional neural networks to exploit the ternary

relationship between publishers, fake news, and users. Experiments conducted on

a popular real-world dataset demonstrate the effectiveness of the proposed method

against existing methods.

Our contributions to smart city data analytics were described in Chapter 5.

We addressed two problems related to IoT data, namely average speed denoising

and air quality data inference. The first problem was discussed in Section 5.3,

where the average speed of vehicles was taken into consideration. As the speed

information is collected by multiple sensors placed at different locations, and the

communication between the sensors and server may have errors, the retrieved speed

data often contains noisy measurements. We thus aim to remove the noise in order

to reconstruct clean data. We formulated this problem as a graph signal denoising

problem, where speed measurements collected at the same time frame form a graph

signal. The underlying graph is created by the locations of sensors. In order to

reconstruct the clean graph signal, we proposed a graph autoencoder based on a

graph convolutional neural network with a global pooling scheme leveraging Kron

reduction, termed K-pooling. The K-pooling helps reduce the computation of the

model while retaining characteristics of the underlying graph. Furthermore, K-

pooling contributes to mitigating over-fitting via simplifying intermediate represen-

tations. Experiments on a real-world dataset show that the proposed autoencoder

consistently outperforms several existing methods.

Air qualify inference is the second problem considered under the goal of smart

city data analytics. In this problem, the concentration of air pollutants is recorded

using both fixed and mobile sensors. As the spatial and temporal resolution of

the air quality data is low, we aim to predict the concentration of air pollutants

at unmeasured locations and time instances, thus improving the spatiotemporal

resolution of data; this problem is referred to as air quality inference. We formulated

the air quality inference as a matrix completion on graphs problem and proposed a

variational graph autoencoder termed AVGAE for predicting missing air quality

measurements. The spatial correlation in the air quality data is captured via

132

7.2. Perspective Work

graph convolutional operation used in the proposed model, while the temporal

correlation is exploited by introducing an additional temporal term in the loss

function. Experimental study on a real-world dataset collected from the Antwerp

city in Belgium demonstrates that our model performs consistently better state-

of-the-art methods for air quality inference thanks to its capability of leveraging

spatiotemporal correlation in the data. Additionally, we extended the AVGAE model

following a multiview strategy, aiming to leverage the inherent correlation between

different pollutants. This resulted in a multiview model, referred to as MAVGAE,

with improved performance compared to the single pollutant model.

Our third goal was realized in Chapter 6, where we considered fundamental

problems in GNNs. Specifically, we focused on improving the propagation rule in

GNNs by using random walk transition probabilities for our convolutional operation.

Furthermore, GNNs often suffer from over-fitting and over-smoothing, which hinder

their performance. This problem was addressed with a novel regularization technique

named DropNode. Similar to dropout, DropNode randomly discards nodes in a

graph during training, augmenting the graph-structured data. More importantly,

DropNode reduces the connectivity of the underlying graph, thus it can defer the

over-smoothing effect. We conducted extensive experiments on eight benchmark

datasets and showed the superior performance of the proposed method against many

advanced baselines.

Overall, this PhD research has relied on different graph-based models, from

general-purpose unsupervised models (e.g., Node2Vec) to deep end-to-end models

such as GNNs. We have leveraged the advantage of incorporating structural informa-

tion of these models for various tasks from classification (e.g., fake news detection,

Twitter user location prediction, node and graph classification), completion (e.g.,

air quality inference) to denoising (e.g., graph signal denoising). It has been shown

via our extensive experiments that graph-based models are very effective in handling

graph-structured data. For this reason, it is reasonable to expect to see more useful

and creative applications of graph deep learning in analyzing social media, IoT data,

and other types of relational data.

7.2 Perspective Work

Two common sources of big data, namely social media and IoT devices, have been

considered in this research. As shown in previous chapters, these types of data

can be represented by graphs, and we have leveraged graph-based deep learning

models, especially GNNs, to exploit the rich structural information. However, graphs

representing big heterogeneous data can have an enormous size, e.g., millions of

nodes. As our models (and most of existing graph-based models) are trained using

the full-batch gradient setting, it precludes the models’ adoption on very large

133

Chapter 7. Conclusion and Perspective Work

datasets residing on huge graphs. Therefore, it is important to focus on the scalability

of GNNs, which forms our first direction of future research. One possible approach

to the scalability of GNNs is to use graph sampling techniques to reduce the size

of large graphs, thus the proposed models can be applied without or with minimal

modification. Another promising approach could be simplifying the proposed models

by designing inception-like architectures where heavy computations like message

passing are pre-computed, leading to the lower computational cost of the models.

As deep learning models are widely known as black boxes, it is usually hard to

understand why and how a deep learning model makes a decision. As our models

are based on graph deep learning, the same issues also apply. For example, the

AVGAE model may accurately predict the concentration value of an air pollutant

at a location without explicitly explaining the reason behind it. Nevertheless, It

would be more persuasive to end users if the model can show similar values at

nearby locations and time instances, or rationalize a certain concentration value

with a context such as adjacent factories or parks. Therefore, our next research

direction will aim to improve the transparency of the proposed models, namely,

to make the models explainable. One possible approach is employing the attention

mechanism for our models, which can reveal how neighboring nodes influence the

prediction decision. In addition, we will use post-hoc analysis techniques to better

understand the decisions of the proposed models, which we believe will eventually

help us design better graph-based deep learning architectures.

134

Appendix A

List of Publications

Publications Accepted/Published in ISI Journals

J1. T. H. Do, E. Tsiligianni, X. Qin, J. Hofman, V. P. La Manna, W. Philips,

and N. Deligiannis, “Graph-deep-learning-based Inference of Fine-grained Air

Quality from Mobile IoT Sensors,” IEEE Internet of Things Journal, 2020.

(Impact factor 9.936)

J2. M. Komorowski, T. H. Do, and N. Deligiannis, “Twitter Data Analysis for

Studying Communities of Practice in the Media Industry,” Telematics and

Informatics, vol. 35, no. 1, pp.195-212, 2018. (Impact factor 4.139)

Publications Submitted/Under Review in ISI Jour-

nals

J3. T. H. Do, D. M. Nguyen, E. Tsiligianni, B. Cornelis, and N. Deligiannis,

“Multiview Deep Learning for Predicting Twitter Users’ Location,” under

review for publication at Neurocomputing (Elsevier).

J4. T. H. Do, D. M. Nguyen, G. Bekoulis, A. Munteanu, and N. Deligiannis,

“Graph Convolutional Neural Networks with Node Transition Probability-

based Message Passing and DropNode Regularization,” under review for

publication at Expert Systems with Applications (Elsevier).

Publications in Conference Proceedings

C1. J. Hofman, M. E. Nikolaou, T. H. Do, X. Qin, E. Rodrigo, W. Philips,

N. Deligiannis and V. P. La Manna, “Mapping Air Quality in IoT Cities:

135

Chapter A. List of Publications

Cloud Calibration and Air Quality Inference of Sensor Data,” Accepted for

publication at IEEE SENSORS 2020, October 2020, pp. 1-5.

C2. T. H. Do, D. M. Nguyen, and N. Deligiannis, “Graph Auto-encoder for Graph

Signal Denoising,” in IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP 2020), May 2020, pp. 3322–3326.

C3. T. H. Do, D. M. Nguyen, E. Tsiligianni, A. Lopez Aguirre, V. P. La Manna, F.

Pasveer, W. Philips, and N. Deligiannis, “Matrix Completion with Variational

Graph Autoencoders: Application in Hyperlocal Air Quality Inference,” in

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP 2019), May 2019, pp. 7535-7539.

C4. D. M. Nguyen, T. H. Do, R. Calderbank, and N. Deligiannis, “Fake News

Detection Using Deep Markov Random Fields,” in Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies”, (NAACL 2019), June 2019, pp. 1391–1400.

C5. S. V. Broucke, L. M. V. Piña, T. H. Do, and N. Deligiannis, “BRUBIKE:

A Dataset of Bicycle Traffic and Weather Conditions for Predicting Cycling

Flow,” in IEEE International Smart Cities Conference (ISC2 2019), October

2019, pp. 432-437.

C6. X. Qin, L. Platisa, T. H. Do, E. Tsiligianni, J. Hofman, V. P. La Manna, N.

Deligiannis, and W. Philips, “Context-based Analysis of Urban Air Quality

using an Opportunistic Mobile Sensor Network,” in 10th EAI International

Conference on Sensor Systems and Software (S-CUBE 2019). December 2019.

C7. T. H. Do, D. M. Nguyen, E. Tsiligianni, B. Cornelis, and N. Deligiannis,

“Twitter user geolocation using deep multiview learning,” in IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP 2018),

April 2018, pp. 6304–6308.

C8. A. Sechelea, T. H. Do, E. Zimos, and N. Deligiannis, “Twitter data clustering

and visualization,” in 23rd International Conference on Telecommunications

(ICT 2016), May 2016, pp. 1-5.

Publications in International Workshops

W1. J. Hofman, T. H. Do, X. Qin, E. Rodrigo, M. Nikolaou, W. Philips, N.

Deligiannis and V. P. La Manna, “Spatiotemporal Air Quality Inference

of Low-Cost Sensor Data; Application on a Cycling Monitoring Network,”

Accepted for publication at ICPR Workshop on Machine Learning Advances

Environmental Science (MAES), January 2021, pp. 1-5.

136

W2. T. H. Do, X. Luo, D. M. Nguyen and N. Deligiannis, “Rumour Detection

Via News Propagation Dynamics and User Representation Learning,” IEEE

Data Science Workshop (DSW 2019), June 2019, pp. 196-200.

W3. N. Deligiannis, T. H. Do, D. M. Nguyen, and X. Luo, “Deep Learning for

Geolocating Social Media Users and Detecting Fake News,” in NATO meeting

of Big Data and Artificial Intelligence for Millitary Decision Making 2018,

June 2018, pp. 1-12. (Young Scientist Best Paper Award)

137

138

References

[1] S. Abu-El-Haija, B. Perozzi, and R. Al-Rfou. Learning edge representations via low-

rank asymmetric projections. In ACM Conference on Information and Knowledge

Management (CIKM), pages 1787–1796, 2017.

[2] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola.

Distributed large-scale natural graph factorization. In International Conference on

World Wide Web (TheWebConf), pages 37–48, 2013.

[3] C. Angermueller, T. Pärnamaa, L. Parts, and O. Stegle. Deep learning for compu-

tational biology. Molecular systems biology, 12(7):878, 2016.

[4] J. S. Apte, K. P. Messier, S. Gani, M. Brauer, T. W. Kirchstetter, M. M. Lunden, J. D.

Marshall, C. J. Portier, R. CH. Vermeulen, and S. P. Hamburg. High-resolution air

pollution mapping with google street view cars: exploiting big data. Environmental

Science & Technology, 51(12):6999–7008, 2017.

[5] J. Atwood and D. Towsley. Diffusion-convolutional neural networks. In Advances in

Neural Information Processing Systems (NeurIPS), pages 1993–2001, 2016.

[6] L. Babai. Graph isomorphism in quasipolynomial time. In ACM Symposium on

Theory of Computing, pages 684–697, 2016.

[7] L. Babai and E. M. Luks. Canonical labeling of graphs. In ACM Symposium on

Theory of Computing, pages 171–183, 1983.

[8] L. Backstrom, E. Sun, and C. Marlow. Find me if you can: improving geographical

prediction with social and spatial proximity. In International Conference on World

Wide Web (TheWebConf), pages 61–70, 2010.

[9] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding

and clustering. In Advances in Neural Information Processing Systems (NeurIPS),

pages 585–591, 2002.

[10] J. L. Bentley. Multidimensional binary search trees used for associative searching.

Communications of the ACM, 18(9):509–517, 1975.

[11] R. Berg, T. N. Kipf, and M. Welling. Graph convolutional matrix completion.

arXiv:1706.02263, 2017.

[12] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi. Graph neural networks with

convolutional arma filters. arXiv:1901.01343, 2019.

139

References

[13] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of

machine Learning research (JMLR), 3(Jan):993–1022, 2003.

[14] K. M. Borgwardt, H. P. Kriegel, S. Vishwanathan, and N. N. Schraudolph. Graph

kernels for disease outcome prediction from protein-protein interaction networks. In

Biocomputing 2007, pages 4–15. World Scientific, 2007.

[15] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola, and

H. P. Kriegel. Protein function prediction via graph kernels. Bioinformatics,

21(suppl 1):i47–i56, 2005.

[16] G. V. Brummelen. Heavenly Mathematics: The Forgotten Art of Spherical Trigonom-

etry. Princeton University Press, 2012.

[17] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally

connected networks on graphs. arXiv:1312.6203, 2013.

[18] D. Cai, X. He, J. Han, and T. S. Huang. Graph regularized nonnegative matrix

factorization for data representation. IEEE transactions on pattern analysis and

machine intelligence, 33(8):1548–1560, 2010.

[19] F. Cao, K. Yao, and J. Liang. Deconvolutional neural network for image super-

resolution. Neural Networks, 132:394–404, 2020.

[20] C. Castillo, M. Mendoza, and B. Poblete. Information credibility on Twitter. In

International Conference on World Wide Web (TheWebConf), pages 675–684, 2011.

[21] Pew Research Center. Social Media Fact Sheet .

https://www.pewresearch.org/internet/fact-sheet/social-media/, June 2019.

[22] M. Cha, Y. Gwon, and H. T. Kung. Twitter geolocation and regional classification

via sparse coding. In AAAI International Conference on Web and Social Media

(ICWSM), pages 582–585, 2015.

[23] B. P. Chamberlain, J. Clough, and M. P. Deisenroth. Neural embeddings of graphs

in hyperbolic space. arXiv:1705.10359, 2017.

[24] H. Chang, D. Lee, M. Eltaher, and J. Lee. @Phillies tweeting from Philly? Predicting

Twitter user locations with spatial word usage. In IEEE/ACM International

Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages

111–118, 2012.

[25] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: synthetic

minority over-sampling technique. Journal of artificial intelligence research (JAIR),

16:321–357, 2002.

[26] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun. Measuring and Relieving the

Over-smoothing Problem for Graph Neural Networks from the Topological View.

arXiv:1909.03211, 2019.

[27] H. Chen, B. Perozzi, Y. Hu, and S. Skiena. Harp: Hierarchical representation learning

for networks. In AAAI Conference on Artificial Intelligence, 2018.

[28] J. Chen. An updated overview of recent gradient descent algorithms.

https://johnchenresearch.github.io/demon/, Feb 2020.

140

References

[29] J. Chen and A. Kyrillidis. Decaying momentum helps neural network training.

arXiv:1910.04952, 2019.

[30] T. Chen and C. Guestrin. XGBoost: A Scalable Tree Boosting System. In

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD), pages 785–794, 2016.

[31] Z. Cheng, J. Caverlee, and K. Lee. A content-driven framework for geolocating

microblog users. ACM Transaction on Intelligent System and Technology, 4(1):2,

2013.

[32] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,

and Y. Bengio. Learning phrase representations using RNN encoder–decoder for

statistical machine translation. In Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1724–1734, October 2014.

[33] J. H. Choi and J. S. Lee. EmbraceNet: A robust deep learning architecture for

multimodal classification. Information Fusion, 51:259–270, 2019.

[34] F. Chollet. Xception: Deep learning with depthwise separable convolutions. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 1251–1258,

2017.

[35] J. Clement. Number of monthly active Twitter users worldwide from 1st quarter

2010 to 1st quarter 2019. https://www.statista.com/statistics/282087/number-of-

monthly-active-twitter-users/, Aug 2019.

[36] J. Clement. Number of monthly active Facebook users worldwide as of 4th quar-

ter 2019. https://www.statista.com/statistics/264810/number-of-monthly-active-

facebook-users-worldwide/, Jan 2020.

[37] R. Compton, D. Jurgens, and D. Allen. Geotagging one hundred million Twitter

accounts with total variation minimization. In IEEE Big Data, pages 393–401, 2014.

[38] Z. Cui, K. Henrickson, R. Ke, and Y. Wang. High-order graph convolutional recurrent

neural network: A deep learning framework for network-scale traffic learning and

forecasting. arXiv:1802.07007, 2018.

[39] Z. Cui, R. Ke, Z. Pu, and Y. Wang. Deep bidirectional and unidirectional LSTM

recurrent neural network for network-wide traffic speed prediction. arXiv:1801.02143,

2018.

[40] H. Dai, Z. Kozareva, B. Dai, A. Smola, and L. Song. Learning steady-states of

iterative algorithms over graphs. In International Conference on Machine Learning

(ICML), pages 1106–1114, 2018.

[41] M. A. Davenport and J. Romberg. An overview of low-rank matrix recovery from

incomplete observations. IEEE Journal of Selected Topics in Signal Processing,

10:608–622, 2016.

[42] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks

on graphs with fast localized spectral filtering. In Advances in Neural Information

Processing Systems (NeurIPS), pages 3844–3852, 2016.

141

References

[43] M. Defferrard, L. Martin, R. Pena, and N. Perraudin. Pygsp: Graph signal processing

in python. URL https://github. com/epfl-lts2/pygsp, 2017.

[44] N. Deligiannis, T. H. Do, D. M. Nguyen, and X. Luo. Deep learning for geolocating

social media users and detecting fake news. In NATO IST-160 Specialist’s Meeting

Big Data and AI, 2018.

[45] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of

deep bidirectional transformers for language understanding. In Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies (NAACL), pages 4171–4186, 2019.

[46] T. H. Do, D. M. Nguyen, G. Bekoulis, A. Munteanu, and N. Deligiannis. Graph con-

volutional neural networks with node transition probability-based message passing

and dropnode regularization. arXiv:2008.12578, 2020.

[47] T. H. Do, D. M. Nguyen, and N. Deligiannis. Graph auto-encoder for graph

signal denoising. In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 3322–3326, 2020.

[48] T. H. Do, D. M. Nguyen, E. Tsiligianni, A. L. Aguirre, V. P. La Manna, F. Pasveer,

W. Philips, and N. Deligiannis. Matrix completion with variational graph au-

toencoders: Application in hyperlocal air quality inference. In IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7535–7539,

2019.

[49] T. H. Do, D. M. Nguyen, E. Tsiligianni, B. Cornelis, and N. Deligiannis. Multiview

deep learning for predicting twitter users’ location. arXiv:1712.08091, 2017.

[50] T. H. Do, D. M. Nguyen, E. Tsiligianni, B. Cornelis, and N. Deligiannis. Twitter

user geolocation using deep multiview learning. In IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 6304–6308, 2018.

[51] T. H. Do, E. Tsiligianni, X. Qin, J. Hofman, V. P. La Manna, W. Philips, and

N. Deligiannis. Graph-deep-learning-based inference of fine-grained air quality from

mobile IoT sensors. IEEE Internet of Things Journal, 2020.

[52] F. Dorfler and F. Bullo. Kron reduction of graphs with applications to electrical

networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(1):150–

163, 2012.

[53] M. Dredze, M. Osborne, and P. Kambadur. Geolocation for twitter: Timing matters.

In Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies (NAACL), pages 1064–1069, 2016.

[54] N. T. Duong, N. Schilling, and L. S. Thieme. Near real-time geolocation prediction

in Twitter streams via matrix factorization based regression. In CIKM, pages 1973–

1976, 2016.

[55] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-

Guzik, and R. P. Adams. Convolutional networks on graphs for learning molecular

fingerprints. In Advances in Neural Information Processing Systems (NeurIPS),

pages 2224–2232, 2015.

142

References

[56] J. Eisenstein, B. O’Connor, N. A. Smith, and E. P. Xing. A latent variable model

for geographic lexical variation. In Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1277–1287, 2010.

[57] S. Ermon and A. Grover. Deep generative models, 2019.

[58] L. Feng, P. Kortoçi, and Y. Liu. A multi-tier data reduction mechanism for IoT

sensors. In International Conference on the Internet of Things, pages 1–8, 2017.

[59] A. Fout, J. Byrd, B. Shariat, and A. Ben-Hur. Protein interface prediction using

graph convolutional networks. In Advances in Neural Information Processing Systems

(NeurIPS), pages 6530–6539, 2017.

[60] H. Gao and S. Ji. Graph U-Nets. In International Conference on Machine Learning

(ICML), pages 2083–2092, 2019.

[61] Z. Gao, G. Fu, C. Ouyang, S. Tsutsui, X. Liu, J. Yang, C. Gessner, B. Foote, D. Wild,

Y. Ding, et al. edge2vec: Representation learning using edge semantics for biomedical

knowledge discovery. BMC Bioinformatics, 20(1):306, 2019.

[62] T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient

alternatives. In Learning Theory and Kernel Machines, pages 129–143. Springer,

2003.

[63] A. Ghosh, H. Kumar, and P. S. Sastry. Robust loss functions under label noise for

deep neural networks. In AAAI, 2017.

[64] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message

passing for quantum chemistry. In International Conference on Machine Learning

(ICML), pages 1263–1272, 2017.

[65] T. Glasmachers. Limits of end-to-end learning. arXiv:1704.08305, 2017.

[66] N. Golubovic, R. Wolski, C. Krintz, and M. Mock. Improving the accuracy of outdoor

temperature prediction by IoT devices. In IEEE International Congress on Internet

of Things (ICIOT), pages 117–124, 2019.

[67] L. G. Gomez, B. Chiem, and J. C. Delvenne. Dynamics based features for graph

classification. arXiv:1705.10817, 2017.

[68] K. M. Gorski, E. Hivon, A. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and

M. Bartelmann. HEALPix: a framework for high-resolution discretization and fast

analysis of data distributed on the sphere. The Astrophysical Journal, 622(2):759,

2005.

[69] A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recurrent

neural networks. In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 6645–6649, 2013.

[70] M. Gritta, M. T. Pilehvar, and N. Collier. Which melbourne? augmenting geocoding

with maps. In ACL, pages 1285–1296, 2018.

[71] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD), pages 855–864, 2016.

143

References

[72] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large

graphs. In Advances in Neural Information Processing Systems (NeurIPS), pages

1024–1034, 2017.

[73] W. L. Hamilton, R. Ying, and J. Leskovec. Representation learning on graphs:

Methods and applications. arXiv:1709.05584, 2017.

[74] D. K. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets on graphs via

spectral graph theory. Applied and Computational Harmonic Analysis, 30(2):129–

150, 2011.

[75] B. Han, P. Cook, and T. Baldwin. Geolocation prediction in social media data by

finding location indicative words. In International Conference on Computational

Linguistics (COLING), pages 1045–1062, 2012.

[76] Z. Harchaoui and F. Bach. Image classification with segmentation graph kernels. In

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–8.

IEEE, 2007.

[77] D. Hasenfratz, O. Saukh, C. Walser, C. Hueglin, M. Fierz, and L. Thiele. Pushing the

spatio-temporal resolution limit of urban air pollution maps. In IEEE International

Conference on Pervasive Computing and Communications, pages 69–77, 2014.

[78] H. He, Y. Bai, E. A. Garcia, and S. Li. ADASYN: Adaptive synthetic sampling

approach for imbalanced learning. In IEEE International Joint Conference on Neural

Networks, pages 1322–1328, 2008.

[79] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

770–778, 2016.

[80] B. Hecht, L. Hong, B. Suh, and E. H. Chi. Tweets from Justin Bieber’s heart: the

dynamics of the location field in user profiles. In ACM conference on human factors

in computing systems (CHI), pages 237–246. ACM, 2011.

[81] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,

9(8):1735–1780, 1997.

[82] L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and K. Tsioutsiouliklis. Discovering

geographical topics in the Twitter stream. In International Conference on World

Wide Web (TheWebConf), pages 769–778, 2012.

[83] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dreetto, and H. Adam. Mobilenets: Efficient convolutional neural networks for mobile

vision applications. arXiv:1704.04861, 2017.

[84] IBM. The four V’s of big data. https://www.ibmbigdatahub.com/infographic/four-

vs-big-data.

[85] A. Jain. The 5 V’s of big data. https://www.ibm.com/blogs/watson-health/the-5-

vs-of-big-data/, Sept 2016.

[86] K. Janocha and W. M. Czarnecki. On loss functions for deep neural networks in

classification. arXiv:1702.05659, 2017.

144

References

[87] R. Jaster and D. Lanius. What is fake news? Versus, 47(2):207–224, 2018.

[88] G. Jayasinghe, B. Jin, J. Mchugh, B. Robinson, and S. Wan. CSIRO Data61 at the

WNUT geo shared task. In Workshop on Noisy User-generated Text (WNUT), pages

218–226, 2016.

[89] X. Ji, S. A. Chun, and J. Geller. Epidemic outbreak and spread detection system

based on twitter data. In International Conference on Health Information Science,

pages 152–163. Springer, 2012.

[90] K. Jia, L. Sun, S. Gao, Z. Song, and B. E. Shi. Laplacian auto-encoders: An explicit

learning of nonlinear data manifold. Neurocomputing, 160:250–260, 2015.

[91] W. Jiang, Y. Wang, M. H. Tsou, and X. Fu. Using social media to detect outdoor air

pollution and monitor air quality index (aqi): a geo-targeted spatiotemporal analysis

framework with sina weibo (chinese twitter). PloS one, 10(10), 2015.

[92] F. Johansson, V. Jethava, D. Dubhashi, and C. Bhattacharyya. Global graph kernels

using geometric embeddings. In International Conference on Machine Learning

(ICML), 2014.

[93] C. A. Davis Jr, G. L. Pappa, D. R. R. Oliveira, and F. L. Arcanjo. Inferring the

location of Twitter messages based on user relationships. Transactions in GIS,

15(6):735–751, 2011.

[94] D. Jurgens. That’s what friends are for: Inferring location in online social media

platforms based on social relationships. In AAAI International Conference on Web

and Social Media (ICWSM), pages 273–282, 2013.

[95] D. Jurgens, T. Finethy, J. McCorriston, Y. T. Xu, and D. Ruths. Geolocation

Prediction in Twitter Using Social Networks: A Critical Analysis and Review of

Current Practice. In AAAI International Conference on Web and Social Media

(ICWSM), pages 188–197, 2015.

[96] V. Kalofolias, X. Bresson, M. Bronstein, and P. Vandergheynst. Matrix completion

on graphs. arXiv:1408.1717, 2014.

[97] A. Karpathy. Convolutional neural networks (cnns/convnets). CS231n Convolutional

Neural Networks for Visual Recognition, 2016.

[98] K. Kersting, N. M. Kriege, C. Morris, P. Mutzel, and M. Neumann. Benchmark data

sets for graph kernels. http://graphkernels.cs.tu-dortmund.de, 2016.

[99] M. Kilibarda, T. Hengl, G. B. M. Heuvelink, B. Gräler, E. Pebesma, M. P. Tadić, and

B. Bajat. Spatio-temporal interpolation of daily temperatures for global land areas at

1 km resolution. Journal of Geophysical Research: Atmospheres, 119(5):2294–2313,

2014.

[100] Y. Kim. Convolutional neural networks for sentence classification. In Conference on

Empirical Methods in Natural Language Processing (EMNLP), 2014.

[101] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.

arXiv:1412.6980, 2014.

[102] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv:1312.6114,

2013.

145

References

[103] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional

networks. arXiv:1609.02907, 2016.

[104] T. N. Kipf and M. Welling. Variational graph auto-encoders. NIPS Workshop on

Bayesian Deep Learning, 2016.

[105] P. K. Kitanidis. Introduction to Geostatistics: Applications in Hydrogeology. Cam-

bridge University Press, 1997.

[106] J. Kobler, U. Schöning, and J. Torán. The Graph Isomorphism Problem: Its

Structural Complexity. Springer Science & Business Media, 2012.

[107] Y. Koren. Factor in the neighbors: Scalable and accurate collaborative filtering.

ACM Transactions on Knowledge Discovery from Data, 4:1, 2010.

[108] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender

systems. Computer, 42(8):30–37, 2009.

[109] R. Korolov, D. Lu, J. Wang, G. Zhou, C. Bonial, C. Voss, L. Kaplan, W. Wal-

lace, J. Han, and H. Ji. On predicting social unrest using social media. In

IEEE/ACM international conference on advances in social networks analysis and

mining (ASONAM), pages 89–95. IEEE, 2016.

[110] N. M. Kriege, F. D. Johansson, and C. Morris. A survey on graph kernels. Applied

Network Science, 5(1):1–42, 2020.

[111] N. M. Kriege, C. Morris, A. Rey, and C. Sohler. A property testing framework for

the theoretical expressivity of graph kernels. In International Joint Conference on

Artificial Intelligence (IJCAI), pages 2348–2354, 2018.

[112] S. Latre, P. Leroux, T. Coenen, B. Braem, P. Ballon, and P. Demeester. City of

things: An integrated and multi-technology testbed for IoT smart city experiments.

In IEEE International Conference on Smart Cities, pages 1–8, 2016.

[113] J. H. Lau and T. Baldwin. An empirical evaluation of doc2vec with practical insights

into document embedding generation. In Workshop on Representation Learning for

NLP, 2016.

[114] J. H. Lau, L. Chi, K. N. Tran, and T. Cohn. End-to-end network for twitter

geolocation prediction and hashing. In International Joint Conference on Natural

Language Processing (IJCNLP), 2017.

[115] H. D. Le, H. V. Luong, and N. Deligiannis. Designing recurrent neural networks

by unfolding an l1-l1 minimization algorithm. In IEEE International Conference on

Image Processing (ICIP), pages 2329–2333. IEEE, 2019.

[116] Q. Le and T. Mikolov. Distributed representations of sentences and documents. In

International Conference on Machine Learning (ICML), pages 1188–1196, 2014.

[117] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444,

2015.

[118] J. Lee, I. Lee, and J. Kang. Self-attention graph pooling. arXiv:1904.08082, 2019.

[119] K. Leetaru. Visualizing seven years of twitter’s evolution: 2012-2018, Mar 2019.

146

References

[120] J. Leskovec and C. Faloutsos. Sampling from large graphs. In ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD), pages

631–636, 2006.

[121] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive Datasets.

Cambridge University Press, 2011.

[122] Q. Li, Z. Cao, J. Zhong, and Q. Li. Graph representation learning with encoding

edges. Neurocomputing, 361:29–39, 2019.

[123] Q. Li, Z. Han, and X. M. Wu. Deeper insights into graph convolutional networks for

semi-supervised learning. In AAAI Conference on Artificial Intelligence, 2018.

[124] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural

networks. In International Conference on Learning Representations (ICLR), 2016.

[125] Y. Li, M. Yang, and Z. Zhang. A survey of multi-view representation learning. IEEE

Transactions on Knowledge and Data Engineering, 31(10):1863–1883, 2018.

[126] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara. Variational autoencoders

for collaborative filtering. In International World Wide Web Conference (TheWeb-

Conf), pages 689–698, 2018.

[127] J. Liu and D. Inkpen. Estimating user location in social media with stacked de-

noising auto-encoders. In Workshop on Vector Space Modeling for Natural Language

Processing, pages 201–210, 2015.

[128] P. Liu, X. Qiu, and X. Huang. Recurrent neural network for text classification with

multi-task learning. arXiv:1605.05101, 2016.

[129] I. Loshchilov and F. Hutter. Decoupled weight decay regularization.

arXiv:1711.05101, 2017.

[130] J. Lucas, S. Sun, R. Zemel, and R. Grosse. Aggregated momentum: Stability through

passive damping. arXiv:1804.00325, 2018.

[131] X. Luo, M. Zhou, Y. Xia, and Q. Zhu. An efficient non-negative matrix-factorization-

based approach to collaborative filtering for recommender systems. IEEE Trans on

Industrial Informatics, 10:1273–1284, 2014.

[132] E. Luzhnica, B. Day, and P. Liò. On graph classification networks, datasets and

baselines. arXiv:1905.04682, 2019.

[133] J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik. Deep neural nets

as a method for quantitative structure–activity relationships. Journal of Chemical

Information and Modeling, 55(2):263–274, 2015.

[134] J. Ma and D. Yarats. Quasi-hyperbolic momentum and adam for deep learning.

arXiv:1810.06801, 2018.

[135] J. MacQueen. Some methods for classification and analysis of multivariate obser-

vations. In In 5-th Berkeley Symposium on Mathematical Statistics and Probability,

pages 281–297, 1967.

[136] J. Mahmud, J. Nichols, and C. Drews. Where is this tweet from? inferring home

locations of twitter users. AAAI International Conference on Web and Social Media

(ICWSM), 12:511–514, 2012.

147

References

[137] B. Marr. Three industries that will be transformed by ai, machine learning and big

data in the next decade. https://www.forbes.com/sites/bernardmarr/2016/09/27/3-

industries-that-will-be-transformed-by-ai-machine-learning-and-big-data-in-the-

next-decade, Sept 2016.

[138] B. Marr. How much data do we create every day? the mind-blowing stats everyone

should read. https://www.forbes.com/sites/rachelsandler/2020/03/05/health-

officials-are-recommending-la-marathon-spectators-stay-6-feet-away-from-each-

other-due-to-coronavirus/, May 2018.

[139] F. Melo and B. Martins. Geocoding textual documents through the usage of

hierarchical classifiers. In Workshop on Geographic Information Retrieval, pages

7:1–7:9, 2015.

[140] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed

representations of words and phrases and their compositionality. In Advances in

Neural Information Processing Systems (NeurIPS), pages 3111–3119, 2013.

[141] M. T. Mitchell et al. Machine learning. McGraw-Hill, Inc., New York, NY, USA,

1997.

[142] P. Mitra, R. Ray, R. Chatterjee, R. Basu, P. Saha, S. Raha, R. Barman, S. Patra,

S. S. Biswas, and S. Saha. Flood forecasting using internet of things and artificial

neural networks. In IEEE Annual Information Technology, Electronics and Mobile

Communication Conference (IEMCON), pages 1–5, 2016.

[143] Y. Miura, M. Taniguchi, T. Taniguchi, and T. Ohkuma. Unifying text, metadata,

and user network representations with a neural network for geolocation prediction.

In Annual Meeting of the Association for Computational Linguistics (ACL), pages

1260–1272, 2017.

[144] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein.

Geometric deep learning on graphs and manifolds using mixture model CNNs. In

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

5115–5124, 2017.

[145] F. Monti, F. Frasca, D. Eynard, D. Mannion, and M. M. Bronstein. Fake news

detection on social media using geometric deep learning. arXiv:1902.06673, 2019.

[146] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and

M. Grohe. Weisfeiler and Leman go neural: Higher-order graph neural networks. In

AAAI Conference on Artificial Intelligence, volume 33, pages 4602–4609, 2019.

[147] B. A. Muthu, C. B. Sivaparthipan, G. Manogaran, R. Sundarasekar, S. Kadry,

A. Shanthini, and A. Dasel. IoT based wearable sensor for diseases prediction and

symptom analysis in healthcare sector. Peer-to-Peer Networking and Applications,

pages 1–12, 2020.

[148] A. Narayanan, M. Chandramohan, L. Chen, Y. Liu, and S. Saminathan. sub-

graph2vec: Learning distributed representations of rooted sub-graphs from large

graphs. arXiv:1606.08928, 2016.

[149] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and S. Jaiswal.

graph2vec: Learning distributed representations of graphs. arXiv:1707.05005, 2017.

148

References

[150] Andrew Ng. Lecture: What is end-to-end deep learning? (c3w2l09).

[151] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng. Multimodal deep

learning. In International Conference on Machine Learning (ICML), 2011.

[152] D. M. Nguyen, T. H. Do, R. Calderbank, and N. Deligiannis. Fake news detection

using deep markov random fields. In Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies

(NAACL), pages 1391–1400, 2019.

[153] D. M. Nguyen, E. Tsiligianni, and N. Deligiannis. Extendable neural matrix

completion. In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2018.

[154] M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolutional neural networks for

graphs. In International Conference on Machine Learning (ICML), pages 2014–2023,

2016.

[155] G. Nikolentzos, P. Meladianos, F. Rousseau, Y. Stavrakas, and M. Vazirgiannis.

Shortest-path graph kernels for document similarity. In Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 1890–1900, 2017.

[156] T. M. Nisar and M. Yeung. Twitter as a tool for forecasting stock market movements:

A short-window event study. The journal of finance and data science, 4(2):101–119,

2018.

[157] C. Olah. Understanding LSTM networks, 2015.

[158] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Vandergheynst. Graph

signal processing: Overview, challenges, and applications. Proceedings of the IEEE,

106(5):808–828, 2018.

[159] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu. Asymmetric transitivity preserv-

ing graph embedding. In ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD), pages 1105–1114, 2016.

[160] E. Pebesma and G. Heuvelink. Spatio-temporal interpolation using gstat. RFID

Journal, 8(1):204–218, 2016.

[161] J. W. Pennebaker, R. L. Boyd, K. Jordan, and K. Blackburn. The development and

psychometric properties of LIWC2015, 2015.

[162] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social represen-

tations. In ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (KDD), pages 701–710, 2014.

[163] B. Perozzi, V. Kulkarni, and S. Skiena. Walklets: Multiscale graph embeddings for

interpretable network classification. arXiv:1605.02115, 2016.

[164] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer.

Deep contextualized word representations. In Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Tech-

nologies (NAACL), 2018.

[165] N. G. Polson and V. O. Sokolov. Deep learning for short-term traffic flow prediction.

Transportation Research Part C: Emerging Technologies, 79:1–17, 2017.

149

References

[166] R. Priedhorsky, A. Culotta, and S. Y. D. Valle. Inferring the origin locations of

tweets with quantitative confidence. In ACM Conference on Computer supported

Cooperative Work and Social Computing, pages 1523–1536, 2014.

[167] X. Qi, R. Liao, J. Jia, S. Fidler, and R. Urtasun. 3d graph neural networks for

rgbd semantic segmentation. In IEEE International Conference on Computer Vision

(ICCV), pages 5199–5208, 2017.

[168] M. Qu, Y. Bengio, and J. Tang. GMNN: Graph markov neural networks.

arXiv:1905.06214, 2019.

[169] A. Quek, Z. Wang, J. Zhang, and D. Feng. Structural image classification with graph

neural networks. In IEEE International Conference on Digital Image Computing:

Techniques and Applications, pages 416–421, 2011.

[170] A. Rahimi, T. Cohn, and T. Baldwin. Twitter user geolocation using a unified

text and network prediction model. In Annual Meeting of the Association for

Computational Linguistics and the 7th International Joint Conference on Natural

Language Processing (ACL IJCNLP), pages 630–636, 2015.

[171] A. Rahimi, T. Cohn, and T. Baldwin. A neural model for user geolocation and lexical

dialectology. In Annual Meeting of the Association for Computational Linguistics

(ACL), pages 209–216, 2017.

[172] A. Rahimi, D. Vu, T. Cohn, and T. Baldwin. Exploiting text and network context

for geolocation of social media users. arXiv:1506.04803, 2015.

[173] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A

deep learning framework for solving forward and inverse problems involving nonlinear

partial differential equations. Journal of Computational Physics, 378:686–707, 2019.

[174] P. Ray and A. Chakrabarti. Twitter sentiment analysis for product review using

lexicon method. In IEEE International Conference on Data Management, Analytics

and Innovation (ICDMAI), pages 211–216, 2017.

[175] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified,

real-time object detection. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 779–788, 2016.

[176] H. Roberts. This is what fake news actually looks like — we ranked 11 election stories

that went viral on Facebook. https://www.businessinsider.com/fake-presidential-

election-news-viral-facebook-trump-clinton-2016-11, Nov 2016.

[177] M. Röder, A. Both, and A. Hinneburg. Exploring the space of topic coherence

measures. In ACM International Conference on Web Search and Data Mining

(WSDM), pages 399–408, 2015.

[178] S. Roller, M. Speriosu, S. Rallapalli, B. Wing, and J. Baldridge. Supervised text-

based geolocation using language models on an adaptive grid. In Conference on

Empirical Methods in Natural Language Processing (EMNLP), pages 1500–1510,

2012.

[179] Y. Rong, W. Huang, T. Xu, and J. Huang. DropEdge: Towards deep graph con-

volutional networks on node classification. In International Conference on Learning

Representations (ICLR), 2019.

150

References

[180] F. Rosenblatt. The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological review, 65(6):386, 1958.

[181] V. L. Rubin, N. J. Conroy, and Y. Chen. Towards news verification: Deception

detection methods for news discourse. In Hawaii International Conference on System

Sciences, pages 5–8, 2015.

[182] S. Ruder. An overview of gradient descent optimization algorithms.

arXiv:1609.04747, 2016.

[183] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph

neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

[184] B. Selby and K. M. Kockelman. Spatial prediction of traffic levels in unmeasured

locations: applications of universal kriging and geographically weighted regression.

Elsevier Journal of Transport Geography, 29:24–32, 2013.

[185] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad. Collective

classification in network data. AI magazine, 29(3):93–93, 2008.

[186] N. Shervashidze, P. Schweitzer, E. J. V. Leeuwen, K. Mehlhorn, and K. M. Borgwardt.

Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research (JMLR),

12(9), 2011.

[187] M. Shimrat. Algorithm 112: position of point relative to polygon. Communications

of the ACM, 5(8):434, 1962.

[188] K. Shu, D. Mahudeswaran, S. Wang, D. Lee, and H. Liu. FakeNewsNet: A data

repository with news content, social context, and spatiotemporal information for

studying fake news on social media. Big Data, 8(3):171–188, 2020.

[189] K. Shu, S. Wang, and H. Liu. Beyond news contents: The role of social context for

fake news detection. In ACM International Conference on Web Search and Data

Mining (WSDM), pages 312–320, 2019.

[190] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The

emerging field of signal processing on graphs: Extending high-dimensional data

analysis to networks and other irregular domains. IEEE signal processing magazine,

30(3):83–98, 2013.

[191] D. Singh and C. K. Mohan. Graph formulation of video activities for abnormal

activity recognition. Pattern Recognition, 65:265–272, 2017.

[192] R. W. Sinnott. Virtues of the haversine. S&T, 68(2):158, 1984.

[193] V. Slavkovikj, S. Verstockt, S. V. Hoecke, and R. V. Walle. Review of wildfire

detection using social media. Fire safety journal, 68:109–118, 2014.

[194] Snopes. Boston Police Officer Kills Black Man Over Marijuana Cigarette.

https://www.snopes.com/fact-check/boston-police-officer-kills-black-man-over-

marijuana-cigarette/, Sept 2016.

[195] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research (JMLR), 15:1929–1958, 2014.

151

References

[196] Statista. Number of monthly active Twitter users worldwide, Nov 2017.

[197] S. Sun. A survey of multi-view machine learning. Neural Computing and Applications,

23(7-8):2031–2038, 2013.

[198] I. Sutskever, O. Vinyals, and Q. Le. Sequence to sequence learning with neural

networks. In Advances in Neural Information Processing Systems (NeurIPS), pages

3104–3112, 2014.

[199] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,

2018.

[200] S. J. Swamidass, J. Chen, J. Bruand, P. Phung, L. Ralaivola, and P. Baldi. Kernels for

small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity.

Bioinformatics, 21(suppl 1):i359–i368, 2005.

[201] D. Teney, L. Liu, and A. D. Hengel. Graph-structured representations for visual ques-

tion answering. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1–9, 2017.

[202] Z. Ullah, F. Al-Turjman, L. Mostarda, and R. Gagliardi. Applications of artificial

intelligence and machine learning in smart cities. Computer Communications, 2020.

[203] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin. Attention is all you need. In Advances in Neural Information

Processing Systems (NeurIPS), pages 5998–6008, 2017.

[204] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph

attention networks. arXiv:1710.10903, 2017.

[205] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm. Deep

graph infomax. arXiv:1809.10341, 2018.

[206] T. Wagner, S. Guha, S. Kasiviswanathan, and N. Mishra. Semi-supervised learning

on data streams via temporal label propagation. In International Conference on

Machine Learning (ICML), pages 5095–5104, 2018.

[207] N. Wale, I. A. Watson, and G. Karypis. Comparison of descriptor spaces for

chemical compound retrieval and classification. Knowledge and Information Systems,

14(3):347–375, 2008.

[208] C. Wang, C. Wang, Z. Wang, X. Ye, and P. S. Yu. Edge2vec: Edge-based social net-

work embedding. ACM Transactions on Knowledge Discovery from Data (TKDD),

14(4):1–24, 2020.

[209] C. Wang, H. Yang, C. Bartz, and C. Meinel. Image captioning with deep bidirectional

lstms. In ACM international conference on Multimedia, pages 988–997, 2016.

[210] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and X. Tang.

Residual attention network for image classification. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 3156–3164, 2017.

[211] R. J. Weiss, J. Chorowski, N. Jaitly, Y. Wu, and Z. Chen. Sequence-to-sequence

models can directly translate foreign speech. arXiv:1703.08581, 2017.

152

References

[212] L. Weng. Attention? Attention! https://lilianweng.github.io/lil-

log/2018/06/24/attention-attention.html, June 2018.

[213] D. B. West et al. Introduction to graph theory, volume 2. Prentice hall Upper Saddle

River, NJ, 1996.

[214] B. Wing and J. Baldridge. Simple supervised document geolocation with geodesic

grids. In Annual Meeting of the Association for Computational Linguistics: Human

language technologies (ACL), pages 955–964, 2011.

[215] B. Wing and J. Baldridge. Hierarchical discriminative classification for text-based

geolocation. In Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 336–348, 2014.

[216] B. Wu, C. Yuan, and W. Hu. Human action recognition based on context-dependent

graph kernels. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2609–2616, 2014.

[217] R. Wu, S. Yan, Y. Shan, Q. Dang, and G. Sun. Deep image: Scaling up image

recognition. arXiv:1501.02876, 7(8), 2015.

[218] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive survey

on graph neural networks. IEEE Transactions on Neural Networks and Learning

Systems, pages 1–21, 2020.

[219] X. Xie, I. Semanjski, S. Gautama, E. Tsiligianni, N. Deligiannis, R. Rajan, F. Pasveer,

and W. Philips. A review of urban air pollution monitoring and exposure assessment

methods. ISPRS International Journal of Geo-Information, 6(12):389, 2017.

[220] Z. Xinyi and L. Chen. Capsule graph neural network. In International Conference

on Learning Representations (ICLR), 2019.

[221] C. Xu, D. Tao, and C. Xu. A survey on multi-view learning. arXiv:1304.5634, 2013.

[222] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan. Inductive representation

learning on temporal graphs. In International Conference on Learning Representa-

tions (ICLR), 2020.

[223] P. Yanardag and S. V. N. Vishwanathan. Deep graph kernels. In ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD), pages

1365–1374, 2015.

[224] S. Yang, L. Li, S. Wang, W. Zhang, and Q. Huang. A graph regularized deep neural

network for unsupervised image representation learning. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 1203–1211, 2017.

[225] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy. Hierarchical attention

networks for document classification. In Conference of the North American chapter

of the Association for Computational Linguistics: Human Language Technologies

(NAACL), pages 1480–1489, 2016.

[226] L. Yao, C. Mao, and Y. Luo. Graph convolutional networks for text classification.

In AAAI Conference on Artificial Intelligence, volume 33, pages 7370–7377, 2019.

153

References

[227] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec. Hierarchical

graph representation learning with differentiable pooling. In Advances in Neural

Information Processing Systems (NeurIPS), pages 4800–4810, 2018.

[228] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions.

arXiv:1511.07122, 2015.

[229] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. Internet of things for

smart cities. IEEE Internet of Things journal, 1(1):22–32, 2014.

[230] J. Zhang and I. Mitliagkas. Yellowfin and the art of momentum tuning.

arXiv:1706.03471, 2017.

[231] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D. Y. Yeung. GaAN: Gated attention

networks for learning on large and spatiotemporal graphs. arXiv:1803.07294, 2018.

[232] M. Zhang, Z. Cui, M. Neumann, and Y. Chen. An end-to-end deep learning

architecture for graph classification. In AAAI Conference on Artificial Intelligence,

pages 4438–4445, 2018.

[233] S. Zhang, L. Yao, A. Sun, and Y. Tay. Deep learning based recommender system: A

survey and new perspectives. ACM Computing Surveys (CSUR), 52(1):1–38, 2019.

[234] X. Zheng, J. Han, and A. Sun. A survey of location prediction on twitter.

arXiv:1705.03172, 2017.

[235] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. Graph

neural networks: A review of methods and applications. arXiv:1812.08434, 2018.

[236] L. Zhou, Y. Zhou, J. J. Corso, R. Socher, and C. Xiong. End-to-end dense video

captioning with masked transformer. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 8739–8748, 2018.

[237] V. V. Zoest, F. B. Osei, G. Hoek, and A. Stein. Spatio-temporal regression kriging

for modelling urban no2 concentrations. International Journal of Geographical

Information Science, pages 1–15, 2019.

154

	Acknowledgments
	Synopsis
	Acronyms
	Notations
	Introduction
	Big Heterogeneous Data
	Social Media
	Smart City
	Graph-based Deep Learning
	Motivations and Research Objectives
	Improving The Quality of Big Data
	Exploiting Big Data Structure for Analytics
	Improving Graph-based Deep Learning Models

	Considered Applications
	Applications for Social Media Data Analytics
	Applications for Smart Cities Data Analytics
	General Classification Problems: Graph and Node Classification

	Major Contributions
	Content Outline

	Background on Deep Learning
	Introduction
	Machine Learning
	Deep Learning
	Artificial Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks
	Attention Models: Towards Interpretability
	Deep Generative Models
	Multiview Deep Learning
	End-to-end Learning

	Optimising The Objective Function
	Regularization
	Conclusion

	Background on Graph-based Deep Learning
	Introduction
	Graph Representation
	Graph Exploration with Random Walk

	Graph Isomorphism
	Graph Learning
	Graph Kernels
	Representation Learning on Graphs

	Graph Neural Networks
	Graph Recurrent Neural Networks
	Graph Convolutional Neural Networks
	Graph Attention Networks
	Message Passing

	Graph-based Regularization
	Conclusion

	Graph-based Deep Learning for Social Media Data Analytics
	Introduction
	Twitter User Geolocation with Multiview Deep Learning
	The Proposed Method
	Experimental Evaluation

	Fake News Detection with Graph Convolutional Neural Network
	The Proposed Method
	Experimental Evaluation

	Conclusion

	Graph-based Deep Learning for Analyzing Internet-of-Things Data: Toward Smart City Applications
	Introduction
	Spatio-temporal Correlation in IoT Data
	Graph Signal Denoising using Graph Autoencoders: Application in Traffic Monitoring
	The Proposed Method
	Experimental Study

	Hyperlocal Air Pollution Inference with Graph Variational Autoencoders
	The Proposed Method
	Experimental Study

	Conclusion

	Graph Neural Networks with Message Passing and DropNode
	Introduction
	Proposed Method
	Graph Convolutional Layers
	Graph Convolutional Networks with GPCONV Layers
	DropNode Regularization

	Experimental Study
	Datasets
	Experimental Settings
	Node Classification
	Graph Classification
	Regularizing Deep Graph Neural Networks

	Conclusion

	Conclusion and Perspective Work
	Conclusion
	Perspective Work

	List of Publications
	References

